TY - GEN A1 - Carlsohn, Anja A1 - Scharhag-Rosenberger, Friederike A1 - Cassel, Michael A1 - Mayer, Frank T1 - Resting Metabolic Rate in Elite Rowers and Canoeists: Difference between Indirect Calorimetry and Prediction N2 - Background: Athletes may differ in their resting metabolic rate (RMR) from the general population. However, to estimate the RMR in athletes, prediction equations that have not been validated in athletes are often used. The purpose of this study was therefore to verify the applicability of commonly used RMR predictions for use in athletes. Methods: The RMR was measured by indirect calorimetry in 17 highly trained rowers and canoeists of the German national teams (BMI 24 ± 2 kg/m2, fat-free mass 69 ± 15 kg). In addition, the RMR was predicted using Cunningham (CUN) and Harris-Benedict (HB) equations. A two-way repeated measures ANOVA was calculated to test for differences between predicted and measured RMR (α = 0.05). The root mean square percentage error (RMSPE) was calculated and the Bland-Altman procedure was used to quantify the bias for each prediction. Results: Prediction equations significantly underestimated the RMR in males (p < 0.001). The RMSPE was calculated to be 18.4% (CUN) and 20.9% (HB) in the entire group. The bias was 133 kcal/24 h for CUN and 202 kcal/24 h for HB. Conclusions: Predictions significantly underestimate the RMR in male heavyweight endurance athletes but not in females. In athletes with a high fat-free mass, prediction equations might therefore not be applicable to estimate energy requirements. Instead, measurement of the resting energy expenditure or specific prediction equations might be needed for the individual heavyweight athlete. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 329 KW - Energy requirement KW - Calorimetry KW - Fat-free mass KW - Nutritional counseling KW - Athletes Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-399837 ER - TY - JOUR A1 - Carlsohn, Anja A1 - Scharhag-Rosenberger, Friederike A1 - Cassel, Michael A1 - Mayer, Frank T1 - Resting metabolic rate in elite rowers and canoeists difference between indirect calorimetry and prediction JF - Annals of nutrition & metabolism : journal of nutrition, metabolic diseases and dietetics ; an official journal of International Union of Nutritional Sciences (IUNS) N2 - Background: Athletes may differ in their resting metabolic rate (RMR) from the general population. However, to estimate the RMR in athletes, prediction equations that have not been validated in athletes are often used. The purpose of this study was therefore to verify the applicability of commonly used RMR predictions for use in athletes. Methods: The RMR was measured by indirect calorimetry in 17 highly trained rowers and canoeists of the German national teams (BMI 24 +/- 2 kg/m(2), fat-free mass 69 +/- 15 kg). In addition, the RMR was predicted using Cunningham (CUN) and Harris-Benedict (HB) equations. A two-way repeated measures ANOVA was calculated to test for differences between predicted and measured RMR (alpha = 0.05). The root mean square percentage error (RMSPE) was calculated and the Bland-Altman procedure was used to quantify the bias for each prediction. Results: Prediction equations significantly underestimated the RMR in males (p < 0.001). The RMSPE was calculated to be 18.4% (CUN) and 20.9% (HB) in the entire group. The bias was 133 kcal/24 h for CUN and 202 kcal/24 h for HB. Conclusions: Predictions significantly underestimate the RMR in male heavyweight endurance athletes but not in females. In athletes with a high fat-free mass, prediction equations might therefore not be applicable to estimate energy requirements. Instead, measurement of the resting energy expenditure or specific prediction equations might be needed for the individual heavyweight athlete. KW - Energy requirement KW - Calorimetry KW - Fat-free mass KW - Nutritional counseling KW - Athletes Y1 - 2011 U6 - https://doi.org/10.1159/000330119 SN - 0250-6807 VL - 58 IS - 3 SP - 239 EP - 244 PB - Karger CY - Basel ER - TY - THES A1 - Rajkumar, Rajagopal T1 - Development of a thermometric sensor for fructosyl valine and fructose using molecularly imprinted polymers as a recognition element T1 - Entwicklung eines thermometrischen Sensors für Fructosyl-Valin und Fructose mittels molekular geprägter Polymere als Erkennungselemente N2 - Nature has always served as a model for mimicking and inspiration to humans in their efforts to improve their life. Researchers have been inspired by nature to produce biomimetic materials with molecular recognition properties by design rather than evolution. Molecular imprinting is one way to prepare such materials. Such smart materials with new functionalities are at the forefront of the development of a relevant number of ongoing and perspective applications ranging from consumer to space industry. Molecularly imprinted polymers were developed by mimicking the natural enzymes or antibodies that serve as host for binding target molecules. These imprints were used as a recognition element to substitute natural biomolecules in biosensors. The concept behind molecular imprinting is to mold a material (with the desired chemical properties) around individual molecules. Upon removal of the molecular templates, one is left with regions in the molded material that fit the shape of the template molecules. Thus, molecular imprinting results in materials that can selectively bind to molecules of interest. Imprinted materials resulted in applications ranging from chemical separation to bioanalytics. In this work attempts were made particularly in the development of molecularly imprinted polymer based thermometric sensors. The main effort was focused towards the development of an covalently imprinted polymer that would be able to selectively bind fructosyl valine (Fru-Val), the N-terminal constituent of hemoglobin A1c ß-chains. Taking into account the known advantages of imprinted polymers, e.g. robustness, thermal and chemical stability, imprinted materials were successfully used as a recognition element in the sensor. One of the serious problems associated with the development of MIP sensors and which lies in the absence of a generic procedure for the transformation of the polymer-template binding event into a detectable signal has been addressed by developing the "thermometric" approach. In general the developed approach gives a new insight on MIP/Analyte interactions. N2 - In dem Bestreben, ihr eigenes Leben zu verbessern, haben die Menschen stets die Natur nachgeahmt und sich von ihr inspirieren lassen. Die Natur hat Forscher zur Erzeugung smarter biomimetischer Stoffe mit molekularen Erkennungseigenschaften nach dem Vorbild der Evolution inspiriert. Eine der Methoden zur Herstellung solcher Substanzen ist das molekulare Prägen. Smarte Materialien mit neuen Eigenschaften stehen an der Spitze der Entwicklung potentieller Anwendungen vom Verbraucher bis hin zur Raumfahrtindustrie. Durch Nachahmung von natürlichen Enzymen oder Antikörpern wurden molekular geprägte Polymere (MIPs) entwickelt, die der Bindung von Zielmolekülen dienen. Diese geprägten Polymere (imprints) wurden anstelle von Biomolekülen als Erkennungselemente in Biosensoren eingesetzt. Das Konzept, das dem molekularen Prägen zugrunde liegt, besteht in der Formung eines Polymers (mit den entsprechenden chemischen Eigenschaften) um einzelne Zielmoleküle herum. Nach Entfernen dieser molekularen Template bleiben Abdrücke im Polymer übrig, die der Form der Templatmoleküle entsprechen. Mit Hilfe des molekularen Prägens kann man also Stoffe herstellen, die sich selektiv an bestimmte Moleküle binden können. Geprägte Polymere finden breite Anwendung, etwa in chemischen Aufreinigungsprozessen und der Bioanalytik. Hauptanliegen der vorliegenden Arbeit war es, thermometrische Sensoren auf der Basis molekular geprägter Polymere zu entwickeln. Die Anstrengungen richteten sich vor allem auf die Entwicklung eines kovalent geprägten Polymers, das in der Lage ist, selektiv Fruktosyl-Valin (Fru-Val), den N-terminalen Bereich von Hämoglobin A1c, zu binden. Aufgrund der bekannten Vorzüge geprägter Polymere – z. B. Robustheit und thermische und chemische Stabilität – wurden geprägte Polymere erfolgreich als Erkennungselement im Sensor angewendet. Eine der größten Herausforderungen bei der Entwicklung von MIP-Sensoren, das Fehlen eines generischen Verfahrens zur Umwandlung der Bindungsreaktion in ein nachweisbares Signal, wurde mit der Entwicklung der thermometrischen Methode in Angriff genommen. Diese Methode führt allgemein zu neuen Einsichten in die Interaktionen zwischen MIP und Analyt. KW - Covalent imprinting KW - Fructosyl valine KW - MIP sensor KW - Fructose KW - Glycated hemoglobin KW - HbA1c KW - Thermistor KW - Biosensor KW - Calorimetry Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17272 ER -