TY - JOUR A1 - Blocki, Anna A1 - Löwenberg, Candy A1 - Jiang, Yi A1 - Kratz, Karl A1 - Neffe, Axel T. A1 - Jung, Friedrich A1 - Lendlein, Andreas T1 - Response of encapsulated cells to a gelatin matrix with varied bulk and microenvironmental elastic properties JF - Polymers for advanced technologies N2 - Gelatin-based hydrogels offer various biochemical cues that support encapsulated cells and are therefore suitable as cell delivery vehicles in regenerative medicine. However, besides the biochemical signals, biomechanical cues are crucial to ensure an optimal support of encapsulated cells. Hence, we aimed to correlate the cellular response of encapsulated cells to macroscopic and microscopic elastic properties of glycidylmethacrylate (GMA)-functionalized gelatin-based hydrogels. To ensure that different observations in cellular behavior could be attributed to differences in elastic properties, an identical concentration as well as degree of functionalization of biopolymers was utilized to form covalently crosslinked hydrogels. Elastic properties were merely altered by varying the average gelatin-chain length. Hydrogels exhibited an increased degree of swelling and a decreased bulk elastic modulus G with prolonged autoclaving of the starting solution. This was accompanied by an increase of hydrogel mesh size and thus by a reduction of crosslinking density. Tougher hydrogels retained the largest amount of cells; however, they also interfered with cell viability. Softer gels contained a lower cell density, but supported cell elongation and viability. Observed differences could be partially attributed to differences in bulk properties, as high crosslinking densities interfere with diffusion and cell spreading and thus can impede cell viability. Interestingly, a microscopic elastic modulus in the range of native soft tissue supported cell viability and elongation best while ensuring a good cell entrapment. In conclusion, gelatin-based hydrogels providing a soft tissue-like microenvironment represent adequate cell delivery vehicles for tissue engineering approaches. Copyright (c) 2016 John Wiley & Sons, Ltd. KW - mechanotransduction KW - hydrogel KW - gelatin KW - cell encapsulation KW - matrix elasticity Y1 - 2017 U6 - https://doi.org/10.1002/pat.3947 SN - 1042-7147 SN - 1099-1581 VL - 28 SP - 1245 EP - 1251 PB - Wiley CY - Hoboken ER - TY - THES A1 - Leiendecker, Mai-Thi T1 - Physikalische Hydrogele auf Polyurethan-Basis T1 - Physical hydrogels based on polyurethanes N2 - Physical hydrogels have gained recent attention as cell substrates, since viscoelasticity or stress relaxation is a powerful parameter in mechanotransduction, which has long been neglected. We designed multi-functional polyurethanes to form physical hydrogels via a unique tunable gelation mechanism. The anionic polyurethanes spontaneously form aggregates in water that are kept in a soluble state through electrostatic repulsion. Fast subsequent gelation can be triggered by charge shielding which allows the aggregation and network building to proceed. This can be induced by adding either acids or salts, resulting in acidic (pH 4-5) or pH-neutral hydrogels, respectively. Whereas conventional polyurethane-based hydrogels are commonly prepared from toxic isocyanate precursors, the physical hydrogelation mechanism described here does not involve chemically reactive species which is ideal for in situ applications in sensitive environments. Both stiffness and stress relaxation can be tuned independently over a broad range and the gels exhibit excellent stress recovery behavior. N2 - Physikalische Hydrogele gewinnen derzeit als Zellsubstrate zunehmend an Interesse, da Viskoelastizität oder Stressrelaxation ein bedeutender Parameter in der Mechanotransduktion ist, der bisher vernachlässigt wurde. In dieser Arbeit wurden multi-funktionelle Polyurethane entworfen, die über einen neuartigen Gelierungsmechanismus physikalische Hydrogele bilden. In Wasser bilden die anionischen Polyurethane spontan Aggregate, welche durch elektrostatische Abstoßung in Lösung gehalten werden. Eine schnelle Gelierung kann von hier aus durch Ladungsabschirmung erreicht werden, wodurch die Aggregation voranschreitet und ein Netzwerk ausgebildet wird. Dies kann durch die Zugabe von verschiedenen Säuren oder Salzen geschehen, sodass sowohl saure (pH 4 - 5) als auch pH-neutrale Hydrogele erhalten werden können. Während konventionelle Hydrogele auf Polyurethan-Basis in der Regel durch toxische isocyanat-haltige Präpolymere hergestellt werden, eignet sich der hier beschriebene physikalische Gelierungsmechanismus für in situ Anwendungen in sensitiven Umgebungen. Sowohl Härte als auch Stressrelaxation der Hydrogele können unabhängig voneinander über einen breiten Bereich eingestellt werden. Darüberhinaus zeichnen sich die Hydrogele durch exzellente Stressregeneration aus. KW - Polyurethane KW - Hydrogele KW - physikalische Hydrogele KW - Kolloidchemie KW - Viskoelastizität KW - Stressrelaxation KW - Stressrelaxierung KW - Bulkgele KW - Mikrogele KW - Mechanotransduktion KW - polyurethanes KW - hydrogels KW - physical hydrogels KW - colloidal chemistry KW - viscoelasticity KW - stress-relaxation KW - stress relaxation KW - bulk gels KW - microgels KW - mechanotransduction Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-103917 ER - TY - THES A1 - Bischofs, Ilka Bettina T1 - Elastic interactions of cellular force patterns N2 - Gewebezellen sammeln ständig Informationen über die mechanischen Eigenschaften ihrer Umgebung, indem sie aktiv an dieser ziehen. Diese Kräfte werden an Zell-Matrix-Kontakten übertragen, die als Mechanosensoren fungieren. Jüngste Experimente mit Zellen auf elastischen Substraten zeigen, dass Zellen sehr empfindlich auf Veränderungen der effektiven Steifigkeit ihrer Umgebung reagieren, die zu einer Reorganisation des Zytoskeletts führen können. In dieser Arbeit wird ein theoretisches Model entwickelt, um die Selbstorganisation von Zellen in weichen Materialien vorherzusagen. Obwohl das Zellverhalten durch komplexe regulatorische Vorgänge in der Zelle gesteuert wird, scheint die typische Antwort von Zellen auf mechanische Reize eine einfache Präferenz für große effektive Steifigkeit der Umgebung zu sein, möglicherweise weil in einer steiferen Umgebung Kräfte an den Kontakten effektiver aufgebaut werden können. Der Begriff Steifigkeit umfasst dabei sowohl Effekte, die durch größere Härte als auch durch elastische Verzerrungsfelder in der Umgebung verursacht werden. Diese Beobachtung kann man als ein Extremalprinzip in der Elastizitätstheorie formulieren. Indem man das zelluläre Kraftmuster spezifiziert, mit dem Zellen mit ihrer Umgebung wechselwirken, und die Umgebung selbst als linear elastisches Material modelliert, kann damit die optimale Orientierung und Position von Zellen vorhergesagt werden. Es werden mehrere praktisch relevante Beispiele für Zellorganisation theoretisch betrachtet: Zellen in externen Spannungsfeldern und Zellen in der Nähe von Grenzflächen für verschiedene Geometrien und Randbedingungen des elastischen Mediums. Dafür werden die entsprechenden elastischen Randwertprobleme in Vollraum, Halbraum und Kugel exakt gelöst. Die Vorhersagen des Models stimmen hervorragend mit experimentellen Befunden für Fibroblastzellen überein, sowohl auf elastischen Substraten als auch in physiologischen Hydrogelen. Mechanisch aktive Zellen wie Fibroblasten können auch elastisch miteinander wechselwirken. Es werden daher optimale Strukturen als Funktion von Materialeigenschaften und Zelldichte bzw. der Geometrie der Zellpositionen berechnet. Schließlich wird mit Hilfe von Monte Carlo Simulationen der Einfluss stochastischer Störungen auf die Strukturbildung untersucht. Das vorliegende Model trägt nicht nur zu einem besseren Verständnis von vielen physiologischen Situationen bei, sondern könnte in Zukunft auch für biomedizinische Anwendungen benutzt werden, um zum Beispiel Protokolle für künstliche Gewebe im Bezug auf Substratgeometrie, Randbedingungen, Materialeigenschaften oder Zelldichte zu optimieren. N2 - Adherent cells constantly collect information about the mechanical properties of their extracellular environment by actively pulling on it through cell-matrix contacts, which act as mechanosensors. In recent years, the sophisticated use of elastic substrates has shown that cells respond very sensitively to changes in effective stiffness in their environment, which results in a reorganization of the cytoskeleton in response to mechanical input. We develop a theoretical model to predict cellular self-organization in soft materials on a coarse grained level. Although cell organization in principle results from complex regulatory events inside the cell, the typical response to mechanical input seems to be a simple preference for large effective stiffness, possibly because force is more efficiently generated in a stiffer environment. The term effective stiffness comprises effects of both rigidity and prestrain in the environment. This observation can be turned into an optimization principle in elasticity theory. By specifying the cellular probing force pattern and by modeling the environment as a linear elastic medium, one can predict preferred cell orientation and position. Various examples for cell organization, which are of large practical interest, are considered theoretically: cells in external strain fields and cells close to boundaries or interfaces for different sample geometries and boundary conditions. For this purpose the elastic equations are solved exactly for an infinite space, an elastic half space and the elastic sphere. The predictions of the model are in excellent agreement with experiments for fibroblast cells, both on elastic substrates and in hydrogels. Mechanically active cells like fibroblasts could also interact elastically with each other. We calculate the optimal structures on elastic substrates as a function of material properties, cell density and the geometry of cell positioning, respectively, that allows each cell to maximize the effective stiffness in its environment due to the traction of all the other cells. Finally, we apply Monte Carlo simulations to study the effect of noise on cellular structure formation. The model not only contributes to a better understanding of many physiological situations. In the future it could also be used for biomedical applications to optimize protocols for artificial tissues with respect to sample geometry, boundary condition, material properties or cell density. T2 - Elastic interactions of cellular force patterns KW - Zellorganisation KW - Fokalkontakt KW - Zytoskelett KW - Punktdefekt KW - Mechanosensor KW - Mechanotransduktion KW - Substrat KW - Morphogenese KW - Kraftdipol KW - extrazelluläre Matr KW - cell organization KW - focal adhesion KW - point defect KW - substrate KW - cytoskeleton KW - mechanosensor KW - morphogenesis KW - mechanotransduction KW - force dipole KW - extra-cellul Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001767 ER -