TY - JOUR A1 - Bhatt, Kaushalendra M. T1 - Microseisms and its impact on the marine-controlled source electromagnetic signal JF - Journal of geophysical research : Solid earth N2 - The marine-controlled source electromagnetic method (mCSEM) is employed for studying the electrical characteristics and fluid contents of sedimentary reservoirs. However, the success rate of the method can be improved significantly by finding the sources of electromagnetic noise and addressing the challenge posed by them at larger offsets where the reservoir signal is often weak. I have studied the mCSEM data and reporting an electromagnetic noise. The strength of the noise is observed 1600 times stronger than the seafloor mCSEM signal at 0.1 Hz. Moreover, the noise and the transmitted mCSEM signals are found coherent in interstation recordings. These readings suggest the severity of the noise. The source investigation presuming the observed noise as an infragravity wave failed to match the response. Then, the role of microseisms is investigated. Microseism causes oscillation of the seafloor and produces electromagnetic disturbances by the dynamics of water. I have used various conditions for a proper discrimination of the noise as microseisms. This mechanism is clearly illustrated with the help of a conceptual diagram. The role of the directionality is part of the study, which is argued for having a significant role in the generation of microseisms. In this paper, a new algorithm is presented and is used for calculating the coherency. The algorithm helps in mapping the coherency value simultaneously in time and frequency domains. KW - microseisms KW - marine-controlled source electromagnetic method KW - spectrogram KW - coherency KW - Pierson-Moskowitz spectra Y1 - 2014 U6 - https://doi.org/10.1002/2014JB011024 SN - 2169-9313 SN - 2169-9356 VL - 119 IS - 12 SP - 8655 EP - 8666 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Izgi, Gizem A1 - Eibl, Eva P. S. A1 - Donner, Stefanie A1 - Bernauer, Felix T1 - Performance Test of the Rotational Sensor blueSeis-3A in a Huddle Test in Fürstenfeldbruck T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Rotational motions play a key role in measuring seismic wavefield properties. Using newly developed portable rotational instruments, it is now possible to directly measure rotational motions in a broad frequency range. Here, we investigated the instrumental self-noise and data quality in a huddle test in Fürstenfeldbruck, Germany, in August 2019. We compare the data from six rotational and three translational sensors. We studied the recorded signals using correlation, coherence analysis, and probabilistic power spectral densities. We sorted the coherent noise into five groups with respect to the similarities in frequency content and shape of the signals. These coherent noises were most likely caused by electrical devices, the dehumidifier system in the building, humans, and natural sources such as wind. We calculated self-noise levels through probabilistic power spectral densities and by applying the Sleeman method, a three-sensor method. Our results from both methods indicate that self-noise levels are stable between 0.5 and 40 Hz. Furthermore, we recorded the 29 August 2019 ML 3.4 Dettingen earthquake. The calculated source directions are found to be realistic for all sensors in comparison to the real back azimuth. We conclude that the five tested blueSeis-3A rotational sensors, when compared with respect to coherent noise, self-noise, and source direction, provide reliable and consistent results. Hence, field experiments with single rotational sensors can be undertaken. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1150 KW - rotational seismology KW - huddle test KW - coherency KW - source direction KW - coherent noise KW - blueSeis-3A sensors Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-518556 SN - 1866-8372 IS - 1150 ER - TY - JOUR A1 - Izgi, Gizem A1 - Eibl, Eva P. S. A1 - Donner, Stefanie A1 - Bernauer, Felix T1 - Performance test of the rotational sensor blueSeis-3A in a huddle test in Fürstenfeldbruck JF - Sensors N2 - Rotational motions play a key role in measuring seismic wavefield properties. Using newly developed portable rotational instruments, it is now possible to directly measure rotational motions in a broad frequency range. Here, we investigated the instrumental self-noise and data quality in a huddle test in Fürstenfeldbruck, Germany, in August 2019. We compare the data from six rotational and three translational sensors. We studied the recorded signals using correlation, coherence analysis, and probabilistic power spectral densities. We sorted the coherent noise into five groups with respect to the similarities in frequency content and shape of the signals. These coherent noises were most likely caused by electrical devices, the dehumidifier system in the building, humans, and natural sources such as wind. We calculated self-noise levels through probabilistic power spectral densities and by applying the Sleeman method, a three-sensor method. Our results from both methods indicate that self-noise levels are stable between 0.5 and 40 Hz. Furthermore, we recorded the 29 August 2019 ML 3.4 Dettingen earthquake. The calculated source directions are found to be realistic for all sensors in comparison to the real back azimuth. We conclude that the five tested blueSeis-3A rotational sensors, when compared with respect to coherent noise, self-noise, and source direction, provide reliable and consistent results. Hence, field experiments with single rotational sensors can be undertaken. KW - rotational seismology KW - huddle test KW - coherency KW - source direction KW - coherent noise KW - blueSeis-3A sensors Y1 - 2021 U6 - https://doi.org/10.3390/s21093170 SN - 1424-8220 VL - 21 IS - 9 PB - MDPI CY - Basel ER -