TY - JOUR A1 - Nicolai, Merle Marie A1 - Witt, Barbara A1 - Friese, Sharleen A1 - Michaelis, Vivien A1 - Hölz-Armstrong, Lisa A1 - Martin, Maximilian A1 - Ebert, Franziska A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Mechanistic studies on the adverse effects of manganese overexposure in differentiated LUHMES cells JF - Food and chemical toxicology N2 - Manganese (Mn) is an essential trace element, but overexposure is associated with toxicity and neurological dysfunction. Accumulation of Mn can be observed in dopamine-rich regions of the brain in vivo and Mn-induced oxidative stress has been discussed extensively. Nevertheless, Mn-induced DNA damage, adverse effects of DNA repair, and possible resulting consequences for the neurite network are not yet characterized. For this, LUHMES cells were used, as they differentiate into dopaminergic-like neurons and form extensive neurite networks. Experiments were conducted to analyze Mn bioavailability and cytotoxicity of MnCl2, indicating a dose-dependent uptake and substantial cytotoxic effects. DNA damage, analyzed by means of 8-oxo-7,8-dihydro-2'-guanine (8oxodG) and single DNA strand break formation, showed significant dose- and time-dependent increase of DNA damage upon 48 h Mn exposure. Furthermore, the DNA damage response was increased which was assessed by analytical quantification of poly(ADP-ribosyl)ation (PARylation). Gene expression of the respective DNA repair genes was not significantly affected. Degradation of the neuronal network is significantly altered by 48 h Mn exposure. Altogether, this study contributes to the characterization of Mn-induced neurotoxicity, by analyzing the adverse effects of Mn on genome integrity in dopaminergic-like neurons and respective outcomes. KW - Manganese KW - Dopaminergic neurons KW - DNA integrity KW - DNA repair KW - Neurodegeneration KW - Oxidative stress KW - Genotoxicity Y1 - 2022 U6 - https://doi.org/10.1016/j.fct.2022.112822 SN - 0278-6915 SN - 1873-6351 VL - 161 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Ebert, Franziska A1 - Meyer, Sören A1 - Leffers, Larissa A1 - Raber, Georg A1 - Francesconi, Kevin A. A1 - Schwerdtle, Tanja T1 - Toxicological characterisation of a thio-arsenosugar-glycerol in human cells JF - Journal of trace elements in medicine and biology N2 - Arsenosugars are water-soluble arsenic species predominant in marine algae and other seafood including mussels and oysters. They typically occur at levels ranging from 2 to 50 mg arsenic/kg dry weight. Most of the arsenosugars contain arsenic as a dimethylarsinoyl group (Me2As(O)-), commonly referred to as the oxo forms, but thio analogues have also been identified in marine organisms and as metabolic products of oxo-arsenosugars. So far, no data regarding toxicity and toxicokinetics of thio-arsenosugars are available. This in vitro-based study indicates that thio-dimethylarsenosugar-glycerol exerts neither pronounced cytotoxicity nor genotoxicity even though this arsenical was bioavailable to human hepatic (HepG2) and urothelial (UROtsa) cells. Experiments with the Caco-2 intestinal barrier model mimicking human absorption indicate for the thio-arsenosugar-glycerol higher intestinal bioavailability as compared to the oxo-arsenosugars. Nevertheless, absorption estimates were much lower in comparison to other arsenicals including arsenite and arsenic-containing hydrocarbons. Arsenic speciation in cell lysates revealed that HepG2 cells are able to metabolise the thio-arsenosugar-glycerol to some extent to dimethylarsinic acid (DMA). These first in vitro data cannot fully exclude risks to human health related to the presence of thio-arsenosugars in food. (C) 2016 Elsevier GmbH. All rights reserved. KW - Arsenic KW - Thio-arsenosugar-glycerol KW - Toxicity KW - Toxicokinetics KW - Genotoxicity KW - Metabolism Y1 - 2016 U6 - https://doi.org/10.1016/j.jtemb.2016.04.013 SN - 0946-672X VL - 38 SP - 150 EP - 156 PB - Springer Publishing Company CY - Jena ER -