TY - JOUR A1 - Bose, Käthe von T1 - Umweltfürsorge im Krankenhaus BT - Hygienische Sauberkeit und die feminisierte Arbeit an der Atmosphäre JF - NTM : Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin N2 - Den Boden putzen, das Bett abziehen, einen Blumenstrauß arrangieren – Bemühungen um Sauberkeit sowie eine angenehme Raumatmosphäre obliegen im Krankenhaus meist weiblichen* Pflegerinnen, Reinigungskräften und Hauswirtschafterinnen. Im Klinikalltag vermischen sich Anforderungen an hygienische Sauberkeit unter Prozessen der Ökonomisierung mit Logiken des Marketings sowie mit affektiv-emotionalen Bedürfnissen der Akteur_innen dieser Räume. Obwohl die Maßstäbe klinischer Hygiene auf medizinischem Wissen basieren, sind die Arbeitsteilung sowie Ansprüche an Sauberkeit auf verschiedenen Hierarchieebenen zugleich von vergeschlechtlichten und teils rassifizierten Vorstellungen durchdrungen, die über den klinischen Kontext hinausweisen. Dies legt schon eine Beschäftigung mit der Geschichte der Bakteriologie nahe: Die Logik und Sprache der Infektionsabwehr ist in Wissenschaft und Alltag auch verwoben mit sozialen Differenzmarkierungen. Unter Rückgriff auf die Ergebnisse einer Ethnografie zu Sauberkeit und Reinigungsarbeiten im Krankenhaus, die wissensgeschichtlich fundiert werden, wird in dem Beitrag die Frage nach der (feminisierten) Sorge für die Umwelt mit der Frage nach der Atmosphäre klinischer Räume verknüpft. Auf welche Weise und mit welchen Effekten verschränken sich wissenschaftlich-medizinisches Hygienewissen mit einem alltäglichen, jedoch historisierbaren Wissen über schöne und angenehme Sauberkeit, das immer noch weiblich konnotiert ist? N2 - Cleaning the floor, stripping the bed, arranging a bouquet of flowers-such tasks are essential to keeping a hospital room clean and creating a pleasant atmosphere. They usually fall under the purview of female* nurses, cleaning staff and housekeepers. In everyday hospital life, the demands for hygienic cleanliness commingle with the imperatives of economization, marketing logic, and attention to the affective and emotional needs of the actors in these rooms. Although the standards of clinical hygiene are based on medical knowledge, the division of labor and the demands for cleanliness at various hierarchical levels also reveal gendered and partly racialized ideas that point beyond the clinical context. This blending of imperatives in the hospital environment invites deeper consideration of the history of bacteriology: The logic and language of defense against infection in science and everyday life is also interwoven with social markers of difference. Drawing on the findings of an ethnography on cleanliness and cleaning work in hospitals, as well as a history of knowledge approach, the article links the question of (feminized) care for the environment with the question of the atmosphere of clinical rooms. In what ways, and to what effect, does scientific knowledge about medical hygiene also carry with it cultural and aesthetic perceptions of beautiful and pleasant cleanliness that reveal feminine connotations rooted in the nineteenth century? T2 - Environmental care in hospitals KW - Krankenhaus KW - Hygiene KW - Geschlecht KW - Atmosphäre KW - Umwelt KW - Hospital KW - Hygiene KW - Gender KW - Atmosphere KW - Environment Y1 - 2021 U6 - https://doi.org/10.1007/s00048-020-00289-x SN - 0036-6978 SN - 1420-9144 VL - 29 IS - 1 SP - 113 EP - 141 PB - Birkhäuser CY - Basel ; Berlin ER - TY - JOUR A1 - Leung, Tsz Yan A1 - Leutbecher, Martin A1 - Reich, Sebastian A1 - Shepherd, Theodore G. T1 - Atmospheric Predictability: Revisiting the Inherent Finite-Time Barrier JF - Journal of the atmospheric sciences N2 - The accepted idea that there exists an inherent finite-time barrier in deterministically predicting atmospheric flows originates from Edward N. Lorenz’s 1969 work based on two-dimensional (2D) turbulence. Yet, known analytic results on the 2D Navier–Stokes (N-S) equations suggest that one can skillfully predict the 2D N-S system indefinitely far ahead should the initial-condition error become sufficiently small, thereby presenting a potential conflict with Lorenz’s theory. Aided by numerical simulations, the present work reexamines Lorenz’s model and reviews both sides of the argument, paying particular attention to the roles played by the slope of the kinetic energy spectrum. It is found that when this slope is shallower than −3, the Lipschitz continuity of analytic solutions (with respect to initial conditions) breaks down as the model resolution increases, unless the viscous range of the real system is resolved—which remains practically impossible. This breakdown leads to the inherent finite-time limit. If, on the other hand, the spectral slope is steeper than −3, then the breakdown does not occur. In this way, the apparent contradiction between the analytic results and Lorenz’s theory is reconciled. KW - Atmosphere KW - Turbulence KW - Error analysis KW - Spectral analysis KW - models KW - distribution KW - Numerical weather prediction KW - forecasting Y1 - 2019 U6 - https://doi.org/10.1175/JAS-D-19-0057.1 SN - 0022-4928 SN - 1520-0469 VL - 76 IS - 12 SP - 3883 EP - 3892 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Arridge, Christopher S. A1 - Achilleos, N. A1 - Agarwal, Jessica A1 - Agnor, C. B. A1 - Ambrosi, R. A1 - Andre, N. A1 - Badman, S. V. A1 - Baines, K. A1 - Banfield, D. A1 - Barthelemy, M. A1 - Bisi, M. M. A1 - Blum, J. A1 - Bocanegra-Bahamon, T. A1 - Bonfond, B. A1 - Bracken, C. A1 - Brandt, P. A1 - Briand, C. A1 - Briois, C. A1 - Brooks, S. A1 - Castillo-Rogez, J. A1 - Cavalie, T. A1 - Christophe, B. A1 - Coates, Andrew J. A1 - Collinson, G. A1 - Cooper, J. F. A1 - Costa-Sitja, M. A1 - Courtin, R. A1 - Daglis, I. A. A1 - De Pater, Imke A1 - Desai, M. A1 - Dirkx, D. A1 - Dougherty, M. K. A1 - Ebert, R. W. A1 - Filacchione, Gianrico A1 - Fletcher, Leigh N. A1 - Fortney, J. A1 - Gerth, I. A1 - Grassi, D. A1 - Grodent, D. A1 - Grün, Eberhard A1 - Gustin, J. A1 - Hedman, M. A1 - Helled, R. A1 - Henri, P. A1 - Hess, Sebastien A1 - Hillier, J. K. A1 - Hofstadter, M. H. A1 - Holme, R. A1 - Horanyi, M. A1 - Hospodarsky, George B. A1 - Hsu, S. A1 - Irwin, P. A1 - Jackman, C. M. A1 - Karatekin, O. A1 - Kempf, Sascha A1 - Khalisi, E. A1 - Konstantinidis, K. A1 - Kruger, H. A1 - Kurth, William S. A1 - Labrianidis, C. A1 - Lainey, V. A1 - Lamy, L. L. A1 - Laneuville, Matthieu A1 - Lucchesi, D. A1 - Luntzer, A. A1 - MacArthur, J. A1 - Maier, A. A1 - Masters, A. A1 - McKenna-Lawlor, S. A1 - Melin, H. A1 - Milillo, A. A1 - Moragas-Klostermeyer, Georg A1 - Morschhauser, Achim A1 - Moses, J. I. A1 - Mousis, O. A1 - Nettelmann, N. A1 - Neubauer, F. M. A1 - Nordheim, T. A1 - Noyelles, B. A1 - Orton, G. S. A1 - Owens, Mathew A1 - Peron, R. A1 - Plainaki, C. A1 - Postberg, F. A1 - Rambaux, N. A1 - Retherford, K. A1 - Reynaud, Serge A1 - Roussos, E. A1 - Russell, C. T. A1 - Rymer, Am. A1 - Sallantin, R. A1 - Sanchez-Lavega, A. A1 - Santolik, O. A1 - Saur, J. A1 - Sayanagi, Km. A1 - Schenk, P. A1 - Schubert, J. A1 - Sergis, N. A1 - Sittler, E. C. A1 - Smith, A. A1 - Spahn, Frank A1 - Srama, Ralf A1 - Stallard, T. A1 - Sterken, V. A1 - Sternovsky, Zoltan A1 - Tiscareno, M. A1 - Tobie, G. A1 - Tosi, F. A1 - Trieloff, M. A1 - Turrini, D. A1 - Turtle, E. P. A1 - Vinatier, S. A1 - Wilson, R. A1 - Zarkat, P. T1 - The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets JF - Planetary and space science N2 - Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99% of the mass of the Sun's planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus' atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency's call for science themes for its large-class mission programme in 2013. KW - Uranus KW - Magnetosphere KW - Atmosphere KW - Natural satellites KW - Rings KW - Planetary interior Y1 - 2014 U6 - https://doi.org/10.1016/j.pss.2014.08.009 SN - 0032-0633 VL - 104 SP - 122 EP - 140 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Tobie, G. A1 - Teanby, N. A. A1 - Coustenis, A. A1 - Jaumann, Ralf A1 - Raulin, E. A1 - Schmidt, J. A1 - Carrasco, N. A1 - Coates, Andrew J. A1 - Cordier, D. A1 - De Kok, R. A1 - Geppert, W. D. A1 - Lebreton, J. -P. A1 - Lefevre, A. A1 - Livengood, T. A. A1 - Mandt, K. E. A1 - Mitri, G. A1 - Nimmo, F. A1 - Nixon, C. A. A1 - Norman, L. A1 - Pappalardo, R. T. A1 - Postberg, F. A1 - Rodriguez, S. A1 - SchuizeMakuch, D. A1 - Soderblom, J. M. A1 - Solomonidou, A. A1 - Stephan, K. A1 - Stofan, E. R. A1 - Turtle, E. P. A1 - Wagner, R. J. A1 - West, R. A. A1 - Westlake, J. H. T1 - Science goals and mission concept for the future exploration of Titan and Enceladus JF - Planetary and space science KW - Titan KW - Enceladus KW - Atmosphere KW - Surface KW - Ocean KW - Interior KW - Missions Y1 - 2014 U6 - https://doi.org/10.1016/j.pss.2014.10.002 SN - 0032-0633 VL - 104 SP - 59 EP - 77 PB - Elsevier CY - Oxford ER -