TY - JOUR A1 - Karo, Nihad M. A1 - Oberhänsli, Roland A1 - Aqrawi, Ahmed M. A1 - Elias, Elias M. A1 - Aswad, Khalid J. A1 - Sudo, Masafumi T1 - New Ar-40/Ar-39 age constraints on cooling and unroofing history of the metamorphic host rocks (and igneous intrusion associates) from the Bulfat Complex (Bulfat area), NE-Iraq JF - Arabian journal of geosciences N2 - The Northern Zagros Suture Zone (NZSZ), formed as a result of the collision between Arabian and Sanandaj-Sirjan microplate, is considered as part of the Zagros orogenic belt. NZSZ is marked by two allochthonous thrust sheets in upward stacking order: lower and upper allochthon. The Bulfat complex is a part of the upper allochthon or "Ophiolite-bearing terrane" of Albian-Cenomenion age (97-105 Ma). Voluminous highly sheared serpentinites associated with ophiolites occur within this upper allochthon. In addition, the Gemo-Qandil Group is characterized by gabbroic to dioritic Bulfat intrusion with a crystallization age spanning from similar to 45 to similar to 40 Ma, as well as extensive metapelites with contact to the Walash-Naupurdam metavolcanic rocks. Due to the deformation in the Sanandaj-Sirjan Zone along the eastern side of the Iraqi segment of NZSZ, the Gemo-Qandil Group was regionally metamorphosed during late Cretaceous (similar to 80 Ma). This tectono-compressional dynamics ultimately caused an oscillatory deformation against Arabian continental margin deposits as well. During these events, gabbro-diorite intrusion with high-grade contact metamorphic aureoles occurred near Bulfat. Thus, there is an overlap between regional and contact metamorphic conditions in the area. The earlier metamorphic characteristic can be seen only in places where the latter contact influence was insignificant. Generally, this can only observed at a distance of more than 2.5 km from the contact. According to petrographic details and field observations, the thermally metamorphosed metapelitic units of the metasediment have been completely assimilated, with only some streaks of biotite and relicts of initial foliation. They strongly resemble amphibolite-grade slices from the regional metamorphic rocks in the region. Metapelitic samples far from the intrusion give similar biotite cooling ages as the intrusive rocks. Thus, they may be affected by the same thermal event. Ar-40/Ar-39 dating of biotite in metapelite rocks of Bulfat by step-wise heating with laser gave average weighted isotopic ages of 34.78 +/- 0.06 Ma. This is interpreted as crystallization/recrystallization age of biotite possibly representing the time of cooling and uplift history of the Bulfat intrusion. Cooling and exhumation rates for the Bulfat gabbro-diorite rocks were estimated as similar to 400 A degrees C/Ma and similar to 3.3 mm/year respectively. According to petrographic details, field observations and Ar/Ar dating concerning the contact metamorphism near Bulfat due to the gabbro-diorite intrusion, no significant deformation is visible during exhumation processes after the Paleogene tectono-thermal event, indicating that isotopic ages of 34.78 +/- 0.06 Ma could mark the timing of termination of the island arc activity in the Ophiolite-bearing terrane (upper allochthon). KW - Iraq KW - Bulfat KW - Metapelites KW - Northern Zagros Suture Zone (NZSZ) KW - Ar-40/Ar-39 KW - Cooling and unroofing history Y1 - 2018 U6 - https://doi.org/10.1007/s12517-018-3571-x SN - 1866-7511 SN - 1866-7538 VL - 11 IS - 10 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Becerril, Laura A1 - Ubide, Teresa A1 - Sudo, Masafumi A1 - Marti, Joan A1 - Galindo, Ines A1 - Gale, Carlos A1 - Maria Morales, Jose A1 - Yepes, Jorge A1 - Lago, Marceliano T1 - Geochronological constraints on the evolution of El Hierro (Canary Islands) JF - Journal of African earth sciences N2 - New age data have been obtained to time constrain the recent Quaternary volcanism of El Hierro (Canary Islands) and to estimate its recurrence rate. We have carried out Ar-40/Ar-39 geochronology on samples spanning the entire volcanostratigraphic sequence of the island and C-14 geochronology on the most recent eruption on the northeast rift of the island: 2280 +/- 30 yr BP. We combine the new absolute data with a revision of published ages onshore, some of which were identified through geomorphological criteria (relative data). We present a revised and updated chronology of volcanism for the last 33 ka that we use to estimate the maximum eruptive recurrence of the island. The number of events per year determined is 9.7 x 10(-4) for the emerged part of the island, which means that, as a minimum, one eruption has occurred approximately every 1000 years. This highlights the need of more geochronological data to better constrain the eruptive recurrence of El Hierro. (C) 2015 Elsevier Ltd. All rights reserved. KW - Ar-40/Ar-39 KW - C-14 KW - Eruptive recurrence KW - El Hierro KW - Canary Islands Y1 - 2016 U6 - https://doi.org/10.1016/j.jafrearsci.2015.10.012 SN - 1464-343X SN - 1879-1956 VL - 113 SP - 88 EP - 94 PB - Elsevier CY - Oxford ER -