TY - THES A1 - Pitzen, Valentin T1 - Weitergeführte funktionelle Charakterisierung des centrosomalen Proteins Cep192 und Untersuchung der Topologie des Centrosoms in Dictyostelium Amöben T1 - Functional Characterization of the Centrosomal Protein Cep192 and Investigation of the Topology of the Centrosome in Dictyostelium amoeba N2 - Das Centrosom von Dictyostelium ist acentriolär aufgebaut, misst ca. 500 nm und besteht aus einer dreischichten Core-Struktur mit umgebender Corona, an der Mikrotubuli nukleieren. In dieser Arbeit wurden das centrosomale Protein Cep192 und mögliche Interaktionspartner am Centrosom eingehend untersucht. Die einleitende Lokalisationsuntersuchung von Cep192 ergab, dass es während der gesamten Mitose an den Spindelpolen lokalisiert und im Vergleich zu den anderen Strukturproteinen der Core-Struktur am stärksten exprimiert ist. Die dauerhafte Lokalisation an den Spindelpolen während der Mitose wird für Proteine angenommen, die in den beiden identisch aufgebauten äußeren Core-Schichten lokalisieren, die das mitotische Centrosom formen. Ein Knockdown von Cep192 führte zur Ausbildung von überzähligen Mikrotubuli-organisierenden Zentren (MTOC) sowie zu einer leicht erhöhten Ploidie. Deshalb wird eine Destabilisierung des Centrosoms durch die verminderte Cep192-Expression angenommen. An Cep192 wurden zwei kleine Tags, der SpotH6- und BioH6-Tag, etabliert, die mit kleinen fluoreszierenden Nachweiskonjugaten markiert werden konnten. Mit den so getagten Proteinen konnte die hochauflösende Expansion Microscopy für das Centrosom optimiert werden und die Core-Struktur erstmals proteinspezifisch in der Fluoreszenzmikroskopie dargestellt werden. Cep192 lokalisiert dabei in den äußeren Core-Schichten. Die kombinierte Markierung von Cep192 und den centrosomalen Proteinen CP39 und CP91 in der Expansion Microscopy erlaubte die Darstellung des dreischichtigen Aufbaus der centrosomalen Core-Struktur, wobei CP39 und CP91 zwischen Cep192 in der inneren Core-Schicht lokalisieren. Auch die Corona wurde in der Expansion Microscopy untersucht: Das Corona-Protein CDK5RAP2 lokalisiert in räumlicher Nähe zu Cep192 in der inneren Corona. Ein Vergleich der Corona-Proteine CDK5RAP2, CP148 und CP224 in der Expansion Microscopy ergab unterscheidbare Sublokalisationen der Proteine innerhalb der Corona und relativ zur Core-Struktur. In Biotinylierungsassays mit den centrosomalen Core-Proteinen CP39 und CP91 sowie des Corona-Proteins CDK5RAP2 konnte Cep192 als möglicher Interaktionspartner identifiziert werden. Die Ergebnisse dieser Arbeit zeigen die wichtige Funktion des Proteins Cep192 im Dictyostelium-Centrosom und ermöglichen durch die Kombination aus Biotinylierungsassays und Expansion Microscopy der untersuchten Proteine ein verbessertes Verständnis der Topologie des Centrosoms. N2 - The Dictyostelium centrosome contains no centrioles and has a diameter of approx. 500 nm. It consists of a three layered core structure and a surrounding corona, which nucleates microtubules. This work focusses on the centrosomal protein Cep192 and potential interactors at the centrosome. Localization studies showed, that Cep192 is a permanent resident at the spindle poles during mitosis and that, compared to other centrosomal core proteins, Cep192 is expressed at the highest level. The permanent residence at the spindle poles throughout mitosis is assumed for proteins which localize to the outer core layers, which form the mitotic centrosome. A knockdown of Cep192 resulted in supernumerary microtubule organizing centers (MTOC) and a slightly higher ploidy. Due to the phenotype, a destabilization of the centrosome caused by the reduced Cep192 expression is assumed. Cep192 was fused to the newly established short tags BioH6 and SpotH6, which are recognized by small fluorescently labelled probes. The tagged proteins were used for superresolution expansion microscopy. Superresolution expansion microscopy was optimized for the centrosome and allowed the protein specific resolving of the core structure for the first time. Cep192 localizes to the outer core layers. Combination of tagged proteins nicely mirrored all three core layers. CP39 and CP91 localize inbetween Cep192 in the inner core layer. Corona proteins were included in the expansion microscopy: the corona protein CDK5RAP2 comes into close proximity of Cep192 and localizes to the inner corona. A comparison with CP148 and CP224, two other corona proteins, revealed a distinct localization of the proteins within the corona and relatively to the core structure. Applied biotinylase assays with the core proteins CP39 and CP91, as well with the corona protein CDK5RAP2 revealed Cep192 as a possible interaction partner of all three proteins. The results of this work show the important function of Cep192 at the Dictyostelium centrosome and through the biotinylase assay and expansion microscopy data shed a light on the refined Dictyostelium centrosome topology. KW - Centrosom KW - Fluoreszenzmikroskopie KW - expansion microscopy KW - Cep192 KW - CDK5RAP2 KW - fluorescence microscopy KW - Cep192 KW - CDK5RAP2 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-548891 ER - TY - GEN A1 - Klauß, André A1 - König, Marcelle A1 - Hille, Carsten T1 - Upgrade of a scanning confocal microscope to a single-beam path STED microscope T2 - PLoS ONE N2 - By overcoming the diffraction limit in light microscopy, super-resolution techniques, such as stimulated emission depletion (STED) microscopy, are experiencing an increasing impact on life sciences. High costs and technically demanding setups, however, may still hinder a wider distribution of this innovation in biomedical research laboratories. As far-field microscopy is the most widely employed microscopy modality in the life sciences, upgrading already existing systems seems to be an attractive option for achieving diffraction-unlimited fluorescence microscopy in a cost-effective manner. Here, we demonstrate the successful upgrade of a commercial time-resolved confocal fluorescence microscope to an easy-to-align STED microscope in the single-beam path layout, previously proposed as "easy-STED", achieving lateral resolution IMPORTANCE In this work, we investigate protein-protein interactions that drive the assembly of the hantavirus envelope. These emerging pathogens have the potential to cause deadly outbreaks in the human population. Therefore, it is important to improve our quantitative understanding of the viral assembly process in infected cells, from a molecular point of view. By applying advanced fluorescence microscopy methods, we monitored the formation of viral spike complexes in different cell types. Our data support a model for hantavirus assembly according to which viral spikes are formed via the clustering of hetero-dimers of the two viral glycoproteins Gn and Gc. Furthermore, the observation of large Gn-Gc hetero-multimers provide the possible first evidence for the initial assembly steps of the viral envelope, directly in the Golgi apparatus of living cells. KW - fluorescence fluctuation microscopy KW - number and brightness KW - virus KW - assembly KW - fluorescence correlation spectroscopy KW - protein-protein KW - interaction KW - fluorescence microscopy KW - fluorescent image analysis Y1 - 2021 U6 - https://doi.org/10.1128/JVI.01238-20 SN - 1098-5514 VL - 95 IS - 4 PB - American Society for Microbiology CY - Baltimore, Md. ER - TY - JOUR A1 - Puppe, Daniel A1 - Leue, Martin A1 - Sommer, Michael A1 - Schaller, Jörg A1 - Kaczorek, Danuta T1 - Auto-fluorescence in phytoliths BT - a mechanistic understanding derived from microscopic and spectroscopic analyses JF - Frontiers in Environmental Science N2 - The detection of auto-fluorescence in phytogenic, hydrated amorphous silica depositions (phytoliths) has been found to be a promising approach to verify if phytoliths were burnt or not, especially in archaeological contexts. However, it is unknown so far at what temperature and how auto-fluorescence is induced in phytoliths. We used fluorescence microscopy, scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), and Fourier transform infrared spectroscopy to analyze auto-fluorescence in modern phytoliths extracted from plant samples or in intact leaves of winter wheat. Leaves and extracted phytoliths were heated at different temperatures up to 600 degrees C. The aims of our experiments were i) to find out what temperature is needed to induce auto-fluorescence in phytoliths, ii) to detect temperature-dependent changes in the molecular structure of phytoliths related to auto-fluorescence, and iii) to derive a mechanistic understanding of auto-fluorescence in phytoliths. We found organic compounds associated with phytoliths to cause auto-fluorescence in phytoliths treated at temperatures below approx. 400 degrees C. In phytoliths treated at higher temperatures, i.e., 450 and 600 degrees C, phytolith auto-fluorescence was mainly caused by molecular changes of phytolith silica. Based on our results we propose that auto-fluorescence in phytoliths is caused by clusterization-triggered emissions, which are caused by overlapping electron clouds forming non-conventional chromophores. In phytoliths heated at temperatures above about 400 degrees C dihydroxylation and the formation of siloxanes result in oxygen clusters that serve as non-conventional chromophores in fluorescence events. Furthermore, SEM-EDX analyses revealed that extractable phytoliths were dominated by lumen phytoliths (62%) compared to cell wall phytoliths (38%). Our findings might be not only relevant in archaeological phytolith-based examinations, but also for studies on the temperature-dependent release of silicon from phytoliths and the potential of long-term carbon sequestration in phytoliths. KW - fluorescence microscopy KW - FTIR spectroscopy KW - SEM-EDX KW - burnt phytoliths; KW - carbon sequestration Y1 - 2022 U6 - https://doi.org/10.3389/fenvs.2022.915947 SN - 2296-665X VL - 10 PB - Frontiers Media CY - Lausanne ER -