TY - JOUR A1 - Rätzel, Dennis A1 - Wilkens, Martin A1 - Menzel, Ralf T1 - Gravitational properties of light-the gravitational field of a laser pulse JF - NEW JOURNAL OF PHYSICS N2 - The gravitational field of a laser pulse of finite lifetime, is investigated in the framework of linearized gravity. Although the effects are very small, they may be of fundamental physical interest. It is shown that the gravitational field of a linearly polarized light pulse is modulated as the norm of the corresponding electric field strength, while no modulations arise for circular polarization. In general, the gravitational field is independent of the polarization direction. It is shown that all physical effects are confined to spherical shells expanding with the speed of light, and that these shells are imprints of the spacetime events representing emission and absorption of the pulse. Nearby test particles at rest are attracted towards the pulse trajectory by the gravitational field due to the emission of the pulse, and they are repelled from the pulse trajectory by the gravitational field due to its absorption. Examples are given for the size of the attractive effect. It is recovered that massless test particles do not experience any physical effect if they are co-propagating with the pulse, and that the acceleration of massless test particles counter-propagating with respect to the pulse is four times stronger than for massive particles at rest. The similarities between the gravitational effect of a laser pulse and Newtonian gravity in two dimensions are pointed out. The spacetime curvature close to the pulse is compared to that induced by gravitational waves from astronomical sources. KW - gravity KW - general relativity KW - laser pulses KW - electromagnetic radiation KW - linearized gravity KW - pp-wave solutions Y1 - 2016 U6 - https://doi.org/10.1088/1367-2630/18/2/023009 SN - 1367-2630 VL - 18 PB - IOP Publ. Ltd. CY - Bristol ER - TY - THES A1 - Amaro-Seoane, Pau T1 - Dense stellar systems and massive black holes T1 - Dichte stellare Systeme und massive Schwarze Löcher BT - sources of gravitational radiation and tidal disruptions BT - Quellen von Gravitationsstrahlung und Gezeiten-Sternzerissereignissen N2 - Gravity dictates the structure of the whole Universe and, although it is triumphantly described by the theory of General Relativity, it is the force that we least understand in nature. One of the cardinal predictions of this theory are black holes. Massive, dark objects are found in the majority of galaxies. Our own galactic center very contains such an object with a mass of about four million solar masses. Are these objects supermassive black holes (SMBHs), or do we need alternatives? The answer lies in the event horizon, the characteristic that defines a black hole. The key to probe the horizon is to model the movement of stars around a SMBH, and the interactions between them, and look for deviations from real observations. Nuclear star clusters harboring a massive, dark object with a mass of up to ~ ten million solar masses are good testbeds to probe the event horizon of the potential SMBH with stars. The channel for interactions between stars and the central MBH are the fact that (a) compact stars and stellar-mass black holes can gradually inspiral into the SMBH due to the emission of gravitational radiation, which is known as an “Extreme Mass Ratio Inspiral” (EMRI), and (b) stars can produce gases which will be accreted by the SMBH through normal stellar evolution, or by collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the SMBH. These two processes involve different disciplines, which combined will provide us with detailed information about the fabric of space and time. In this habilitation I present nine articles of my recent work directly related with these topics. N2 - Die Gravitation bestimmt die Struktur des ganzen Universums und ist, obwohl sie mit großem Erfolg durch die Theorie der Allgemeinen Relativitätstheorie beschrieben wird, die am wenigsten verstandene Kraft in der Natur. Eine der grundsätzlichsten Vorhersagen dieser Theorie sind Schwarze Löcher. Massive, dunkle Objekte befinden sich in einem Großteil aller Galaxien. Das Zentrum unserer eigenen Galaxis enthält solch ein Objekt mit einer Masse von etwa vier Millionen Sonnenmassen. Sind diese Objekte supermassive Schwarze Löcher oder brauchen wir Alternativen? Die Antwort liegt im Ereignishorizont, der Eigenschaft, die ein Schwarzes Loch definiert. Der Schlüssel um den Ereignishorizont zu untersuchen ist, die Bewegungen der Sterne um eine Supermassives Schwarzes Loch zu modellieren, sowie deren Interaktionen, und nach Abweichungen von unseren Erwartungen in echten Beobachtungen zu suchen. Zentrale Sternhaufen, die ein massives, dunkles Objekt mit einer Masse bis zu ∼ zehn Millionen Sonnenmassen enthalten, sind gute Laborarien um den Ereignishorizont eines möglichen supermassiven Schwarzen Lochs mit Hilfe von Sternen zu untersuchen. Die Kanäle für mögliche Wechselwirkungen zwischen Sternen und einem zentralen Schwarzen Loch sind: (a) Kompakte Sternreste und stellare Schwarze Löcher können durch die Emission von Gravitationswellen allmählich auf spiralförmigen Orbits in das supermassive Schwarze Loch fallen, was als “Extreme Mass Ratio Inspiral” (EMRI) bezeichent wird. (b) Durch normale Sternentwicklung (Sternwinde) sowie durch Sternkollisionen oder Zerstörung von Sternen im starken zentralen Gezeitenfeld kann Gas freigesetzt werden, welches anschließend vom supermassiven Schwarzen Loch akkretiert werden kann. Solche Prozesse können wesentlich zur Masse eines Supermassiven Schwarzen Lochs beitragen. Die beiden Prozesse (a und b) beinhalten verschiedene astrophysikalische Aspekte, welche uns in ihrer Kombination mit detaillierter Information über die Beschaffenheit der Raumzeit versorgen. In dieser Habilitationsschrift präsentiere ich neun Artikel aus meiner jüngeren Forschungsarbeit, welche direkt Probleme aus diesen Themenbereichen behandeln. KW - stellar dynamics KW - massive black holes KW - gravitational waves KW - general relativity KW - Stellardynamik KW - massive Schwarze Löcher KW - Gravitationswellen KW - allgemeine Relativitätstheorie Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95439 ER - TY - JOUR A1 - Rätzel, Dennis A1 - Wilkens, Martin A1 - Menzel, Ralf T1 - Gravitational properties of light BT - the gravitational field of a laser pulse JF - New journal of physics : the open-access journal for physics N2 - The gravitational field of a laser pulse of finite lifetime, is investigated in the framework of linearized gravity. Although the effects are very small, they may be of fundamental physical interest. It is shown that the gravitational field of a linearly polarized light pulse is modulated as the norm of the corresponding electric field strength, while no modulations arise for circular polarization. In general, the gravitational field is independent of the polarization direction. It is shown that all physical effects are confined to spherical shells expanding with the speed of light, and that these shells are imprints of the spacetime events representing emission and absorption of the pulse. Nearby test particles at rest are attracted towards the pulse trajectory by the gravitational field due to the emission of the pulse, and they are repelled from the pulse trajectory by the gravitational field due to its absorption. Examples are given for the size of the attractive effect. It is recovered that massless test particles do not experience any physical effect if they are co-propagating with the pulse, and that the acceleration of massless test particles counter-propagating with respect to the pulse is four times stronger than for massive particles at rest. The similarities between the gravitational effect of a laser pulse and Newtonian gravity in two dimensions are pointed out. The spacetime curvature close to the pulse is compared to that induced by gravitational waves from astronomical sources. KW - gravity KW - general relativity KW - laser pulses KW - electromagnetic radiation KW - linearized gravity KW - pp-wave solutions Y1 - 2016 U6 - https://doi.org/10.1088/1367-2630/18/2/023009 SN - 1367-2630 VL - 18 SP - 1 EP - 16 PB - IOP Science CY - London ER - TY - GEN A1 - Rätzel, Dennis A1 - Wilkens, Martin A1 - Menzel, Ralf T1 - Gravitational properties of light BT - the gravitational field of a laser pulse N2 - The gravitational field of a laser pulse of finite lifetime, is investigated in the framework of linearized gravity. Although the effects are very small, they may be of fundamental physical interest. It is shown that the gravitational field of a linearly polarized light pulse is modulated as the norm of the corresponding electric field strength, while no modulations arise for circular polarization. In general, the gravitational field is independent of the polarization direction. It is shown that all physical effects are confined to spherical shells expanding with the speed of light, and that these shells are imprints of the spacetime events representing emission and absorption of the pulse. Nearby test particles at rest are attracted towards the pulse trajectory by the gravitational field due to the emission of the pulse, and they are repelled from the pulse trajectory by the gravitational field due to its absorption. Examples are given for the size of the attractive effect. It is recovered that massless test particles do not experience any physical effect if they are co-propagating with the pulse, and that the acceleration of massless test particles counter-propagating with respect to the pulse is four times stronger than for massive particles at rest. The similarities between the gravitational effect of a laser pulse and Newtonian gravity in two dimensions are pointed out. The spacetime curvature close to the pulse is compared to that induced by gravitational waves from astronomical sources. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 222 KW - electromagnetic radiation KW - general relativity KW - gravity KW - laser pulses KW - linearized gravity KW - pp-wave solutions Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-90553 ER -