TY - JOUR A1 - Hering, Robert A1 - Hauptfleisch, Morgan A1 - Jago, Mark A1 - Smith, Taylor A1 - Kramer-Schadt, Stephanie A1 - Stiegler, Jonas A1 - Blaum, Niels T1 - Don't stop me now: Managed fence gaps could allow migratory ungulates to track dynamic resources and reduce fence related energy loss JF - Frontiers in Ecology and Evolution N2 - In semi-arid environments characterized by erratic rainfall and scattered primary production, migratory movements are a key survival strategy of large herbivores to track resources over vast areas. Veterinary Cordon Fences (VCFs), intended to reduce wildlife-livestock disease transmission, fragment large parts of southern Africa and have limited the movements of large wild mammals for over 60 years. Consequently, wildlife-fence interactions are frequent and often result in perforations of the fence, mainly caused by elephants. Yet, we lack knowledge about at which times fences act as barriers, how fences directly alter the energy expenditure of native herbivores, and what the consequences of impermeability are. We studied 2-year ungulate movements in three common antelopes (springbok, kudu, eland) across a perforated part of Namibia's VCF separating a wildlife reserve and Etosha National Park using GPS telemetry, accelerometer measurements, and satellite imagery. We identified 2905 fence interaction events which we used to evaluate critical times of encounters and direct fence effects on energy expenditure. Using vegetation type-specific greenness dynamics, we quantified what animals gained in terms of high quality food resources from crossing the VCF. Our results show that the perforation of the VCF sustains herbivore-vegetation interactions in the savanna with its scattered resources. Fence permeability led to peaks in crossing numbers during the first flush of woody plants before the rain started. Kudu and eland often showed increased energy expenditure when crossing the fence. Energy expenditure was lowered during the frequent interactions of ungulates standing at the fence. We found no alteration of energy expenditure when springbok immediately found and crossed fence breaches. Our results indicate that constantly open gaps did not affect energy expenditure, while gaps with obstacles increased motion. Closing gaps may have confused ungulates and modified their intended movements. While browsing, sedentary kudu's use of space was less affected by the VCF; migratory, mixed-feeding springbok, and eland benefited from gaps by gaining forage quality and quantity after crossing. This highlights the importance of access to vast areas to allow ungulates to track vital vegetation patches. KW - veterinary cordon fence KW - ungulate KW - fence ecology KW - resource-tracking KW - energy expenditure KW - accelerometer KW - GPS KW - wildlife and habitat management Y1 - 2022 U6 - https://doi.org/10.3389/fevo.2022.907079 SN - 2296-701X SP - 1 EP - 18 PB - Frontiers CY - Lausanne, Schweiz ER - TY - JOUR A1 - Hering, Robert A1 - Hauptfleisch, Morgan A1 - Kramer-Schadt, Stephanie A1 - Stiegler, Jonas A1 - Blaum, Niels T1 - Effects of fences and fence gaps on the movement behavior of three southern African antelope species JF - Frontiers in Conservation Science N2 - Globally, migratory ungulates are affected by fences. While field observational studies reveal the amount of animal–fence interactions across taxa, GPS tracking-based studies uncover fence effects on movement patterns and habitat selection. However, studies on the direct effects of fences and fence gaps on movement behavior, especially based on high-frequency tracking data, are scarce. We used GPS tracking on three common African antelopes (Tragelaphus strepsiceros, Antidorcas marsupialis, and T. oryx) with movement strategies ranging from range residency to nomadism in a semi-arid, Namibian savanna traversed by wildlife-proof fences that elephants have regularly breached. We classified major forms of ungulate–fence interaction types on a seasonal and a daily scale. Furthermore, we recorded the distances and times spent at fences regarding the total individual space use. Based on this, we analyzed the direct effects of fences and fence gaps on the animals’ movement behavior for the previously defined types of animal–fence interactions. Antelope-fence interactions peaked during the early hours of the day and during seasonal transitions when the limiting resource changed between water and forage. Major types of ungulate–fence interactions were quick, trace-like, or marked by halts. We found that the amount of time spent at fences was highest for nomadic eland. Migratory springbok adjusted their space use concerning fence gap positions. If the small home ranges of sedentary kudu included a fence, they frequently interacted with this fence. For springbok and eland, distance traveled along a fence declined with increasing utilization of a fence gap. All species reduced their speed in the proximity of a fence but often increased their speed when encountering the fence. Crossing a fence led to increased speeds for all species. We demonstrate that fence effects mainly occur during crucial foraging times (seasonal scale) and during times of directed movements (daily scale). Importantly, we provide evidence that fences directly alter antelope movement behaviors with negative implications for energy budgets and that persistent fence gaps can reduce the intensity of such alterations. Our findings help to guide future animal–fence studies and provide insights for wildlife fencing and fence gap planning. KW - fence ecology KW - veterinary cordon fence KW - ungulate KW - movement speed KW - fence interaction KW - GPS KW - Africa KW - wildlife conservation Y1 - 2022 U6 - https://doi.org/10.3389/fcosc.2022.959423 SN - 2673-611X VL - 3 SP - 1 EP - 19 PB - Frontiers CY - Lausanne, Schweiz ER - TY - JOUR A1 - Mayer, Martin A1 - Ullmann, Wiebke A1 - Heinrich, Rebecca A1 - Fischer, Christina A1 - Blaum, Niels A1 - Sunde, Peter T1 - Seasonal effects of habitat structure and weather on the habitat selection and home range size of a mammal in agricultural landscapes JF - Landscape ecology N2 - Context Human land use intensified over the last century and simultaneously, extreme weather events have become more frequent. However, little is known about the interplay between habitat structure, direct short-term weather effects and indirect seasonal effects on animal space use and behavior. Objectives We used the European hare (Lepus europaeus) as model to investigate how habitat structure and weather conditions affect habitat selection and home range size, predictors for habitat quality and energetic requirements. Methods Using > 100,000 GPS positions of 60 hares in three areas in Denmark and Germany, we analyzed habitat selection and home range size in response to seasonally changing habitat structure, measured as vegetation height and agricultural field size, and weather. We compared daily and monthly home ranges to disentangle between direct short-term weather effects and indirect seasonal effects of climate. Results Habitat selection and home range size varied seasonally as a response to changing habitat structure, potentially affecting the availability of food and shelter. Overall, habitat structure and seasonality were more important in explaining hare habitat selection and home range size compared to direct weather conditions. Nevertheless, hares adjusted habitat selection and daily home range size in response to temperature, wind speed and humidity, possibly in response to thermal constrains and predation risk. Conclusions For effective conservation, habitat heterogeneity should be increased, e.g. by reducing agricultural field sizes and the implementation of set-asides that provide both forage and shelter, especially during the colder months of the year. KW - European hare KW - GPS KW - Habitat selection KW - Home range KW - Lepus europaeus KW - Weather Y1 - 2019 U6 - https://doi.org/10.1007/s10980-019-00878-9 SN - 0921-2973 SN - 1572-9761 VL - 34 IS - 10 SP - 2279 EP - 2294 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Mayer, Martin A1 - Ullmann, Wiebke A1 - Sunde, Peter A1 - Fischer, Christina A1 - Blaum, Niels T1 - Habitat selection by the European hare in arable landscapes BT - The importance of small-scale habitat structure for conservation JF - Ecology and Evolution N2 - Agricultural land-use practices have intensified over the last decades, leading to population declines of various farmland species, including the European hare (Lepus europaeus). In many European countries, arable fields dominate agricultural landscapes. Compared to pastures, arable land is highly variable, resulting in a large spatial variation of food and cover for wildlife over the course of the year, which potentially affects habitat selection by hares. Here, we investigated within-home-range habitat selection by hares in arable areas in Denmark and Germany to identify habitat requirements for their conservation. We hypothesized that hare habitat selection would depend on local habitat structure, that is, vegetation height, but also on agricultural field size, vegetation type, and proximity to field edges. Active hares generally selected for short vegetation (1-25 cm) and avoided higher vegetation and bare ground, especially when fields were comparatively larger. Vegetation >50 cm potentially restricts hares from entering parts of their home range and does not provide good forage, the latter also being the case on bare ground. The vegetation type was important for habitat selection by inactive hares, with fabaceae, fallow, and maize being selected for, potentially providing both cover and forage. Our results indicate that patches of shorter vegetation could improve the forage quality and habitat accessibility for hares, especially in areas with large monocultures. Thus, policymakers should aim to increase areas with short vegetation throughout the year. Further, permanent set-asides, like fallow and wildflower areas, would provide year-round cover for inactive hares. Finally, the reduction in field sizes would increase the density of field margins, and farming different crop types within small areas could improve the habitat for hares and other farmland species. KW - agriculture KW - arable land KW - conservation KW - GPS KW - habitat selection KW - Lepus europaeus KW - vegetation height Y1 - 2018 U6 - https://doi.org/10.1002/ece3.4613 SN - 2045-7758 VL - 8 IS - 23 SP - 11619 EP - 11633 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Socquet, Anne A1 - Valdes, Jesus Pina A1 - Jara, Jorge A1 - Cotton, Fabrice Pierre A1 - Walpersdorf, Andrea A1 - Cotte, Nathalie A1 - von Specht, Sebastian A1 - Ortega-Culaciati, Francisco A1 - Carrizo, Daniel A1 - Norabuena, Edmundo T1 - An 8month slow slip event triggers progressive nucleation of the 2014 Chile megathrust JF - Geophysical research letters N2 - The mechanisms leading to large earthquakes are poorly understood and documented. Here we characterize the long-term precursory phase of the 1 April 2014 M(w)8.1 North Chile megathrust. We show that a group of coastal GPS stations accelerated westward 8months before the main shock, corresponding to a M(w)6.5 slow slip event on the subduction interface, 80% of which was aseismic. Concurrent interface foreshocks underwent a diminution of their radiation at high frequency, as shown by the temporal evolution of Fourier spectra and residuals with respect to ground motions predicted by recent subduction models. Such ground motions change suggests that in response to the slow sliding of the subduction interface, seismic ruptures are progressively becoming smoother and/or slower. The gradual propagation of seismic ruptures beyond seismic asperities into surrounding metastable areas could explain these observations and might be the precursory mechanism eventually leading to the main shock. KW - seismology KW - GPS KW - subduction KW - precursor Y1 - 2017 U6 - https://doi.org/10.1002/2017GL073023 SN - 0094-8276 SN - 1944-8007 VL - 44 SP - 4046 EP - 4053 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Tu, Rui A1 - Wang, Rongjiang A1 - Walter, Thomas R. A1 - Diao, FaQi T1 - Adaptive recognition and correction of baseline shifts from collocated GPS and accelerometer using two phases Kalman filter JF - Advances in space research N2 - The real-time recognition and precise correction of baseline shifts in strong-motion records is a critical issue for GPS and accelerometer combined processing. This paper proposes a method to adaptively recognize and correct baseline shifts in strong-motion records by utilizing GPS measurements using two phases Kalman filter. By defining four kinds of learning statistics and criteria, the time series of estimated baseline shifts can be divided into four time intervals: initialization, static, transient and permanent. During the time interval in which the transient baseline shift is recognized, the dynamic noise of the Kalman filter system and the length of the baseline shifts estimation window are adaptively adjusted to yield a robust integration solution. The validations from an experimental and real datasets show that acceleration baseline shifts can be precisely recognized and corrected, thus, the combined system adaptively adjusted the estimation strategy to get a more robust solution. (C) 2014 COSPAR. Published by Elsevier Ltd. All rights reserved. KW - GPS KW - Strong-motion KW - Baseline shift KW - Kalman filter KW - Integration Y1 - 2014 U6 - https://doi.org/10.1016/j.asr.2014.07.008 SN - 0273-1177 SN - 1879-1948 VL - 54 IS - 9 SP - 1924 EP - 1932 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Botova, M. G. A1 - Namgaladze, Alexander A. A1 - Prokhorov, Boris E. T1 - Modeling of variations of the peak F2 layer electron density and total electron content during the recovery period after the magnetic storm of April 15-20, 2002 JF - Russian journal of physical chemistry : B, Focus on physics N2 - The results of numerical modeling by using the global upper atmosphere model of the Earth (UAM) for reproducing the peak F2 layer electron density (N (m) F2) and total electron content (TEC) during recovery period after the magnetic storm of the April 15-20, 2002 are discussed. According to the simulations, the time it takes to reach a stationary regime of N (m) F2 and TEC diurnal variations is 24 hours, much shorter then the plasmasphere refilling time. The results are compared with the predictions of the IRI-2007 empirical model and GPS data on the TEC and found in good quantitative agreement for the latitudinal variations of N (m) F2 and TEC for daytime conditions in the southern hemisphere. The worst agreement occurs in the region of the main ionospheric trough. KW - total electron content KW - peak F2-layer electron density KW - GPS Y1 - 2013 U6 - https://doi.org/10.1134/S1990793113050151 SN - 1990-7931 SN - 1990-7923 VL - 7 IS - 5 SP - 606 EP - 610 PB - Pleiades Publ. CY - New York ER - TY - JOUR A1 - Moreno, Marcelo Spegiorin A1 - Melnick, Daniel A1 - Rosenau, M. A1 - Báez, Juan Carlos A1 - Klotz, Jan A1 - Oncken, Onno A1 - Tassara, Andres A1 - Chen, J. A1 - Bataille, Klaus A1 - Bevis, M. A1 - Socquet, Anne A1 - Bolte, John A1 - Vigny, C. A1 - Brooks, B. A1 - Ryder, I. A1 - Grund, Volker A1 - Smalley, B. A1 - Carrizo, Daniel A1 - Bartsch, M. A1 - Hase, H. T1 - Toward understanding tectonic control on the M-w 8.8 2010 Maule Chile earthquake JF - Earth & planetary science letters N2 - The Maule earthquake of 27th February 2010 (M-w = 8.8) affected similar to 500 km of the Nazca-South America plate boundary in south-central Chile producing spectacular crustal deformation. Here, we present a detailed estimate of static coseismic surface offsets as measured by survey and continuous GPS, both in near- and far-field regions. Earthquake slip along the megathrust has been inferred from a Joint inversion of our new data together with published GPS, InSAR, and land-level changes data using Green's functions generated by a spherical finite-element model with realistic subduction zone geometry. The combination of the data sets provided a good resolution, indicating that most of the slip was well resolved. Coseismic slip was concentrated north of the epicenter with up to 16 m of slip, whereas to the south it reached over 10 m within two minor patches. A comparison of coseismic slip with the slip deficit accumulated since the last great earthquake in 1835 suggests that the 2010 event closed a mature seismic gap. Slip deficit distribution shows an apparent local overshoot that highlight cycle-to-cycle variability, which has to be taken into account when anticipating future events from interseismic observations. Rupture propagation was obviously not affected by bathymetric features of the incoming plate. Instead, splay faults in the upper plate seem to have limited rupture propagation in the updip and along-strike directions. Additionally, we found that along-strike gradients in slip are spatially correlated with geometrical inflections of the megathrust. Our study suggests that persistent tectonic features may control strain accumulation and release along subduction megathrusts. KW - GPS KW - Chile KW - Maule KW - slip model KW - FEM Y1 - 2012 U6 - https://doi.org/10.1016/j.epsl.2012.01.006 SN - 0012-821X VL - 321 IS - 3 SP - 152 EP - 165 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Moreno, Marcelo Spegiorin A1 - Melnick, Daniel A1 - Rosenau, M. A1 - Bolte, John A1 - Klotz, Jan A1 - Echtler, Helmut Peter A1 - Báez, Juan Carlos A1 - Bataille, Klaus A1 - Chen, J. A1 - Bevis, M. A1 - Hase, H. A1 - Oncken, Onno T1 - Heterogeneous plate locking in the South-Central Chile subduction zone building up the next great earthquake JF - Earth & planetary science letters N2 - We use Global Positioning System (GPS) velocities and kinematic Finite Element models (FE-models) to infer the state of locking between the converging Nazca and South America plates in South-Central Chile (36 degrees S -46 degrees S) and to evaluate its spatial and temporal variability. GPS velocities provide information on earthquake-cycle deformation over the last decade in areas affected by the megathrust events of 1960 (M-w = 9.5) and 2010 (M-w = 8.8). Our data confirm that a change in surface velocity patterns of these two seismotectonic segments can be related to their different stages in the seismic cycle: Accordingly, the northern (2010) segment was in a final stage of interseismic loading whereas the southern (1960) segment is still in a postseismic stage and undergoes a prolonged viscoelastic mantle relaxation. After correcting the signals for mantle relaxation, the residual GPS velocity pattern suggests that the plate interface accumulates slip deficit in a spatially and presumably temporally variable way towards the next great event. Though some similarity exist between locking and 1960 coseismic slip, extrapolating the current, decadal scale slip deficit accumulation towards the similar to 300-yr recurrence times of giant events here does neither yield the slip distribution nor the moment magnitude of the 1960 earthquake. This suggests that either the locking pattern is evolving in time (to reconcile a slip deficit distribution similar to the 1960 earthquake) or that some asperities are not persistent over multiple events. The accumulated moment deficit since 1960 suggests that highly locked patches in the 1960 segment are already capable of producing a M similar to 8 event if triggered to fail by stress transfer from the 2010 event. KW - GPS KW - Chile KW - Maule KW - locking degree KW - postseismic deformation KW - earthquake cycle Y1 - 2011 U6 - https://doi.org/10.1016/j.epsl.2011.03.025 SN - 0012-821X VL - 305 IS - 3-4 SP - 413 EP - 424 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Zolotov, O. V. A1 - Prokhorov, Boris E. A1 - Namgaladze, Alexander A. A1 - Martynenko, O. V. T1 - Variations in the total electron content of the ionosphere during preparation of earthquakes JF - Russian journal of physical chemistry : B, Focus on physics N2 - The morphological features in the deviations of the total electron content (TEC) of the ionosphere from the background undisturbed state as possible precursors of the earthquake of January 12, 2010 (21:53 UT (16:53 LT), 18.46A degrees N, 72.5A degrees W, 7.0 M) in Haiti are analyzed. To identify these features, global and regional differential TEC maps based on global 2-h TEC maps provided by NASA in the IONEX format were plotted. For the considered earthquake, long-lived disturbances, presumably of seismic origin, were localized in the near-epicenter area and were accompanied by similar effects in the magnetoconjugate region. Both decreases and increases in the local TEC over the period from 22 UT of January 10 to 08 UT of January 12, 2010 were observed. The horizontal dimensions of the anomalies were similar to 40A degrees in longitude and similar to 20A degrees in latitude, with the magnitude of TEC disturbances reaching similar to 40% relative to the background near the epicenter and more than 50% in the magnetoconjugate area. No significant geomagnetic disturbances within January 1-12, 2010 were observed, i.e., the detected TEC anomalies were manifestations of interplay between processes in the lithosphere-atmosphere-ionosphere system. KW - TEC KW - ionospheric precursors of earthquakes KW - GPS Y1 - 2011 U6 - https://doi.org/10.1134/S1990793111030146 SN - 1990-7931 VL - 5 IS - 3 SP - 435 EP - 438 PB - Pleiades Publ. CY - New York ER -