TY - JOUR A1 - Fischer, Martin H. A1 - Shaki, Samuel T1 - Number concepts: abstract and embodied JF - Philosophical transactions of the Royal Society of London : B, Biological sciences N2 - Numerical knowledge, including number concepts and arithmetic procedures, seems to be a clear-cut case for abstract symbol manipulation. Yet, evidence from perceptual and motor behaviour reveals that natural number knowledge and simple arithmetic also remain closely associated with modal experiences. Following a review of behavioural, animal and neuroscience studies of number processing, we propose a revised understanding of psychological number concepts as grounded in physical constraints, embodied in experience and situated through task-specific intentions. The idea that number concepts occupy a range of positions on the continuum between abstract and modal conceptual knowledge also accounts for systematic heuristics and biases in mental arithmetic, thus inviting psycho-logical approaches to the study of the mathematical mind. KW - embodied cognition KW - mental arithmetic KW - mental number line KW - numerical cognition KW - SNARC effect Y1 - 2018 U6 - https://doi.org/10.1098/rstb.2017.0125 SN - 0962-8436 SN - 1471-2970 VL - 373 IS - 1752 PB - Royal Society CY - London ER - TY - JOUR A1 - Fischer, Martin H. A1 - Miklashevsky, Alex A. A1 - Shaki, Samuel T1 - Commentary : The Developmental Trajectory of the Operational Momentum Effect JF - Frontiers in Psychology KW - embodied cognition KW - operational momentum KW - SNARC effect KW - mental arithmetic KW - numerical cognition Y1 - 2018 U6 - https://doi.org/10.3389/fpsyg.2018.02259 SN - 1664-1078 N1 - A Commentary on The Developmental Trajectory of the Operational Momentum Effect by Pinheiro-Chagas, P., Didino, D., Haase, V. G., Wood, G., and Knops, A. (2018). Front. Psychol. 9:1062 doi: 10.3389/fpsyg.2018.01062 VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Fischer, Martin H. A1 - Miklashevsky, Alex A. A1 - Shaki, Samuel T1 - Commentary : The Developmental Trajectory of the Operational Momentum Effect T2 - Postprints der Universität Potsdam Humanwissenschaftliche Reihe T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 502 KW - embodied cognition KW - operational momentum KW - SNARC effect KW - mental arithmetic KW - numerical cognition Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-423169 SN - 1866-8364 N1 - A Commentary on The Developmental Trajectory of the Operational Momentum Effect by Pinheiro-Chagas, P., Didino, D., Haase, V. G., Wood, G., and Knops, A. (2018). Front. Psychol. 9:1062 doi: 10.3389/fpsyg.2018.01062 IS - 502 ER - TY - JOUR A1 - Felisatti, Arianna A1 - Laubrock, Jochen A1 - Shaki, Samuel A1 - Fischer, Martin H. T1 - A biological foundation for spatial–numerical associations BT - the brain's asymmetric frequency tuning JF - Annals of the New York Academy of Sciences N2 - "Left" and "right" coordinates control our spatial behavior and even influence abstract thoughts. For number concepts, horizontal spatial-numerical associations (SNAs) have been widely documented: we associate few with left and many with right. Importantly, increments are universally coded on the right side even in preverbal humans and nonhuman animals, thus questioning the fundamental role of directional cultural habits, such as reading or finger counting. Here, we propose a biological, nonnumerical mechanism for the origin of SNAs on the basis of asymmetric tuning of animal brains for different spatial frequencies (SFs). The resulting selective visual processing predicts both universal SNAs and their context-dependence. We support our proposal by analyzing the stimuli used to document SNAs in newborns for their SF content. As predicted, the SFs contained in visual patterns with few versus many elements preferentially engage right versus left brain hemispheres, respectively, thus predicting left-versus rightward behavioral biases. Our "brain's asymmetric frequency tuning" hypothesis explains the perceptual origin of horizontal SNAs for nonsymbolic visual numerosities and might be extensible to the auditory domain. KW - hemispheric asymmetry KW - numerical cognition KW - SNARC effect KW - spatial KW - frequency tuning KW - spatial-numerical associations KW - spatial vision Y1 - 2020 U6 - https://doi.org/10.1111/nyas.14418 SN - 0077-8923 SN - 1749-6632 VL - 1477 IS - 1 SP - 44 EP - 53 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - D'Ascenzo, Stefania A1 - Fischer, Martin H. A1 - Shaki, Samuel A1 - Lugli, Luisa T1 - Number to me, space to you BT - joint representation of spatial-numerical associations JF - Psychonomic bulletin & review : a journal of the Psychonomic Society N2 - Recent work has shown that number concepts activate both spatial and magnitude representations. According to the social co-representation literature which has shown that participants typically represent task components assigned to others together with their own, we asked whether explicit magnitude meaning and explicit spatial coding must be present in a single mind, or can be distributed across two minds, to generate a spatial-numerical congruency effect. In a shared go/no-go task that eliminated peripheral spatial codes, we assigned explicit magnitude processing to participants and spatial processing to either human or non-human co-agents. The spatial-numerical congruency effect emerged only with human co-agents. We demonstrate an inter-personal level of conceptual congruency between space and number that arises from a shared conceptual representation not contaminated by peripheral spatial codes. Theoretical implications of this finding for numerical cognition are discussed. KW - Social co-representation KW - Conceptual congruency effect KW - Numerical KW - cognition KW - SNARC effect Y1 - 2021 U6 - https://doi.org/10.3758/s13423-021-02013-9 SN - 1069-9384 SN - 1531-5320 VL - 29 IS - 2 SP - 485 EP - 491 PB - Springer CY - New York ER -