TY - JOUR A1 - Zimmermann, Beate A1 - Zimmermann, Alexander A1 - Turner, Benjamin L. A1 - Francke, Till A1 - Elsenbeer, Helmut T1 - Connectivity of overland flow by drainage network expansion in a rain forest catchment JF - Water resources research N2 - Soils in various places of the Panama Canal Watershed feature a low saturated hydraulic conductivity (K-s) at shallow depth, which promotes overland-flow generation and associated flashy catchment responses. In undisturbed forests of these areas, overland flow is concentrated in flow lines that extend the channel network and provide hydrological connectivity between hillslopes and streams. To understand the dynamics of overland-flow connectivity, as well as the impact of connectivity on catchment response, we studied an undisturbed headwater catchment by monitoring overland-flow occurrence in all flow lines and discharge, suspended sediment, and total phosphorus at the catchment outlet. We find that connectivity is strongly influenced by seasonal variation in antecedent wetness and can develop even under light rainfall conditions. Connectivity increased rapidly as rainfall frequency increased, eventually leading to full connectivity and surficial drainage of entire hillslopes. Connectivity was nonlinearly related to catchment response. However, additional information on factors such as overland-flow volume would be required to constrain relationships between connectivity, stormflow, and the export of suspended sediment and phosphorus. The effort to monitor those factors would be substantial, so we advocate applying the established links between rain event characteristics, drainage network expansion by flow lines, and catchment response for predictive modeling and catchment classification in forests of the Panama Canal Watershed and in similar regions elsewhere. KW - connectivity KW - overland flow KW - stormflow KW - suspended sediment KW - phosphorus KW - drainage network expansion Y1 - 2014 U6 - https://doi.org/10.1002/2012WR012660 SN - 0043-1397 SN - 1944-7973 VL - 50 IS - 2 SP - 1457 EP - 1473 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Neill, Christopher A1 - Coe, Michael T. A1 - Riskin, Shelby H. A1 - Krusche, Alex V. A1 - Elsenbeer, Helmut A1 - Macedo, Marcia N. A1 - McHorney, Richard A1 - Lefebvre, Paul A1 - Davidson, Eric A. A1 - Scheffler, Raphael A1 - Figueira, Adelaine Michela e Silva A1 - Porder, Stephen A1 - Deegan, Linda A. T1 - Watershed responses to Amazon soya bean cropland expansion and intensification JF - Philosophical transactions of the Royal Society of London : B, Biological sciences N2 - The expansion and intensification of soya bean agriculture in southeastern Amazonia can alter watershed hydrology and biogeochemistry by changing the land cover, water balance and nutrient inputs. Several new insights on the responses of watershed hydrology and biogeochemistry to deforestation in Mato Grosso have emerged from recent intensive field campaigns in this region. Because of reduced evapotranspiration, total water export increases threefold to fourfold in soya bean watersheds compared with forest. However, the deep and highly permeable soils on the broad plateaus on which much of the soya bean cultivation has expanded buffer small soya bean watersheds against increased stormflows. Concentrations of nitrate and phosphate do not differ between forest or soya bean watersheds because fixation of phosphorus fertilizer by iron and aluminium oxides and anion exchange of nitrate in deep soils restrict nutrient movement. Despite resistance to biogeochemical change, streams in soya bean watersheds have higher temperatures caused by impoundments and reduction of bordering riparian forest. In larger rivers, increased water flow, current velocities and sediment flux following deforestation can reshape stream morphology, suggesting that cumulative impacts of deforestation in small watersheds will occur at larger scales. KW - soya beans KW - watersheds KW - nitrogen KW - phosphorus KW - soil Y1 - 2013 U6 - https://doi.org/10.1098/rstb.2012.0425 SN - 0962-8436 SN - 1471-2970 VL - 368 IS - 1619 PB - Royal Society CY - London ER -