TY - JOUR A1 - Puppe, Daniel A1 - Wanner, Manfred A1 - Sommer, Michael T1 - Data on euglyphid testate amoeba densities, corresponding protozoic silicon pools, and selected soil parameters of initial and forested biogeosystems JF - Data in brief N2 - The dataset in the present article provides information on protozoic silicon (Si) pools represented by euglyphid testate amoebae (TA) in soils of initial and forested biogeosystems. Protozoic Si pools were calculated from densities of euglyphid TA shells and corresponding Si contents. The article also includes data on potential annual biosilicification rates of euglyphid TA at the examined sites. Furthermore, data on selected soil parameters (e.g., readily-available Si, soil pH) and site characteristics (e.g., soil groups, climate data) can be found. The data might be interesting for researchers focusing on biological processes in Si cycling in general and euglyphid TA and corresponding protozoic Si pools in particular. KW - Silicon cycling KW - Biogenic silica KW - Terrestrial biogeosystems KW - Biosilicification KW - Euglyphida Y1 - 2018 U6 - https://doi.org/10.1016/j.dib.2018.10.164 SN - 2352-3409 VL - 21 SP - 1697 EP - 1703 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Wanner, Manfred A1 - Seidl-Lampa, Barbara A1 - Höhn, Axel A1 - Puppe, Daniel A1 - Meisterfeld, Ralf A1 - Sommer, Michael T1 - Culture growth of testate amoebae under different silicon concentrations JF - European journal of protistology N2 - Testate amoebae with self-secreted siliceous shell platelets ("idiosomes") play an important role in terrestrial silicon (Si) cycles. In this context, Si-dependent culture growth dynamics of idiosomic testate amoebae are of interest. Clonal cultures of idiosomic testate amoebae were analyzed under three different Si concentrations: low (50 mu mol L-1), moderate/site-specific (150 mu mol L-1) and high Si supply (500 mu mol L-1). Food (Saccharomyces cerevisiae) was provided in surplus. (i) Shell size of four different clones of idiosomic testate amoebae either decreased (Trinema galeata, Euglypha filifera cf.), increased (E. rotunda cf.), or did not change (E. rotunda) under the lowest Si concentration (50 mu mol Si L-1). (ii) Culture growth of idiosomic Euglypha rotunda was dependent on Si concentration. The more Si available in the culture medium, the earlier the entry into exponential growth phase. (iii) Culture growth of idiosomic Euglypha rotunda was dependent on origin of inoculum. Amoebae previously cultured under a moderate Si concentration revealed highest sustainability in consecutive cultures. Amoebae derived from cultures with high Si concentrations showed rapid culture growth which finished early in consecutive cultures. (iv) Si (diluted in the culture medium) was absorbed by amoebae and fixed in the amoeba shells resulting in decreased Si concentrations. (C) 2016 Elsevier GmbH. All rights reserved. KW - Amoebal silicon KW - Sommer et al. 2006 KW - Biosilicification KW - Consumption KW - Culture growth dynamics KW - Euglyphida KW - Terrestrial Si cycle Y1 - 2016 U6 - https://doi.org/10.1016/j.ejop.2016.08.008 SN - 0932-4739 SN - 1618-0429 VL - 56 SP - 171 EP - 179 PB - Royal Society of Chemistry CY - Jena ER - TY - JOUR A1 - Puppe, Daniel A1 - Ehrmann, Otto A1 - Kaczorek, Danuta A1 - Wanner, Manfred A1 - Sommer, Michael T1 - The protozoic Si pool in temperate forest ecosystems - Quantification, abiotic controls and interactions with earthworms JF - Geoderma : an international journal of soil science N2 - Biogenic silicon (BSI) pools influence Si cycling in terrestrial ecosystems. As research has been focused mainly on phytogenic BSi pools until now, there is only little information available on quantities of other BSi pools. There are no systematic studies on protozoic Si pools - here represented by idiosomic testate amoebae (TA) - and abiotic and biotic influences in temperate forest ecosystems. We selected ten old forests along a strong gradient in soil forming factors (especially parent material and climate), soil properties and humus forms. We quantified idiosomic Si pools, corresponding annual biosilicification, plant-available and amorphous Si fractions of topsoil horizons. Furthermore, we analyzed the potential influences of abiotic factors (e.g. soil pH) and earthworms on idiosomic Si pools. While idiosomic Si pools were relatively small (up to 5 kg Si ha(-1)), annual biosilicification rates of living TA (17-80 kg Si ha(-1)) were comparable to or even exceeded reported data of annual Si uptake by trees. Soil pH exerted a strong, non-linear control on plant-available Si. Surprisingly, no relationship between Si supply and idiosomic Si pools could be found (no Si limitation). Instead, idiosomic Si pools showed a strong, negative relationship to earthworm biomasses, which corresponded to humus forms. We concluded that earthworms control idiosomic Si pools in forest soils by direct (feeding, competition) and/or indirect mechanisms (e.g. change of habitat structure). Earthworms themselves were strongly influenced by soil pH: Below a threshold of pH 3.8 no endogeic or anecic earthworms existed. As soil pH is a result of weathering and acidification idiosomic Si pools are indirectly, but ultimately controlled by soil forming factors, mainly parent material and climate. (C) 2014 Elsevier B.V. All rights reserved. KW - Biogenic silica KW - Testate amoebae KW - Biosilicification KW - Terrestrial Si cycle KW - Si fractions KW - Humus forms Y1 - 2015 U6 - https://doi.org/10.1016/j.geoderma.2014.12.018 SN - 0016-7061 SN - 1872-6259 VL - 243 SP - 196 EP - 204 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Puppe, Daniel A1 - Kaczorek, Danuta A1 - Wanner, Manfred A1 - Sommer, Michael T1 - Dynamics and drivers of the protozoic Si pool along a 10-year chronosequence of initial ecosystem states JF - Ecological engineering : the journal of ecotechnology N2 - The size and dynamics of biogenic silicon (BSi) pools influence silicon (Si) fluxes from terrestrial to aquatic ecosystems. The research focus up to now was on the role of plants in Si cycling. In recent studies on old forests annual biosilicification rates of idiosomic testate amoebae (i.e. TA producing self-secreted silica shells) were shown to be of the order of Si uptake by trees. However, no comparable data exist for initial ecosystems. We analyzed the protozoic BSi pool (idiosomic TA), corresponding annual biosilicification rates and readily available and amorphous Si fractions along a 10-year chronosequence in a post-mining landscape in Brandenburg, Germany. Idiosomic Si pools ranged from 3 to 680 g Si ha(-1) and were about 3-4 times higher at vegetated compared to uncovered spots. They increased significantly with age and were related to temporal development of soil chemical properties. The calculation of annual biosilicification resulted in maxima between 2 and 16 kg Si ha(-1) with rates always higher at vegetated spots. Our results showed that the BSi pool of idiosomic TA is built up rapidly during the initial phases of ecosystem development and is strongly linked to plant growth. Furthermore, our findings highlight the importance of TA for Si cycling in young artificial ecosystems. (C) 2014 Elsevier B.V. All rights reserved. KW - Idiosomic Si pool KW - Amorphous silica KW - Terrestrial ecosystem development KW - Artificial catchment KW - Si fractions KW - Biosilicification Y1 - 2014 U6 - https://doi.org/10.1016/j.ecoleng.2014.06.011 SN - 0925-8574 SN - 1872-6992 VL - 70 SP - 477 EP - 482 PB - Elsevier CY - Amsterdam ER -