TY - THES A1 - Mancini, Carola T1 - Analysis of the effects of age-related changes of metabolic flux on brown adipocyte formation and function N2 - Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis, thereby allowing mammals to maintain a constant body temperature in a cold environment. Thermogenic capacity of this tissue is due to a high mitochondrial density and expression of uncoupling protein 1 (UCP1), a unique brown adipocyte marker which dissipates the mitochondrial proton gradient to produce heat instead of ATP. BAT is actively involved in whole-body metabolic homeostasis and during aging there is a loss of classical brown adipose tissue with concomitantly reduced browning capacity of white adipose tissue. Therefore, an age-dependent decrease of BAT-related energy expenditure capacity may exacerbate the development of metabolic diseases, including obesity and type 2 diabetes mellitus. Given that direct effects of age-related changes of BAT-metabolic flux have yet to be unraveled, the aim of the current thesis is to investigate potential metabolic mechanisms involved in BAT-dysfunction during aging and to identify suitable metabolic candidates as functional biomarkers of BAT-aging. To this aim, integration of transcriptomic, metabolomic and proteomic data analyses of BAT from young and aged mice was performed, and a group of candidates with age-related changes was revealed. Metabolomic analysis showed age-dependent alterations of metabolic intermediates involved in energy, nucleotide and vitamin metabolism, with major alterations regarding the purine nucleotide pool. These data suggest a potential role of nucleotide intermediates in age-related BAT defects. In addition, the screening of transcriptomic and proteomic data sets from BAT of young and aged mice allowed identification of a 60-kDa lysophospholipase, also known as L-asparaginase (Aspg), whose expression declines during BAT-aging. Involvement of Aspg in brown adipocyte thermogenic function was subsequently analyzed at the molecular level using in vitro approaches and animal models. The findings revealed sensitivity of Aspg expression to β3-adrenergic activation via different metabolic cues, including cold exposure and treatment with β3-adrenergic agonist CL. To further examine ASPG function in BAT, an over-expression model of Aspg in a brown adipocyte cell line was established and showed that these cells were metabolically more active compared to controls, revealing increased expression of the main brown-adipocyte specific marker UCP1, as well as higher lipolysis rates. An in vitro loss-of-function model of Aspg was also functionally analyzed, revealing reduced brown adipogenic characteristics and an impaired lipolysis, thus confirming physiological relevance of Aspg in brown adipocyte function. Characterization of a transgenic mouse model with whole-body inactivation of the Aspg gene (Aspg-KO) allowed investigation of the role of ASPG under in vivo conditions, indicating a mild obesogenic phenotype, hypertrophic white adipocytes, impairment of the early thermogenic response upon cold-stimulation and dysfunctional insulin sensitivity. Taken together, these data show that ASPG may represent a new functional biomarker of BAT-aging that regulates thermogenesis and therefore a potential target for the treatment of age-related metabolic disease. KW - adipose tissue KW - aging KW - nutrients KW - metabolism KW - Fettgewebe KW - Alterung KW - Stoffwechsel KW - Nährstoffe Y1 - 2021 U6 - https://doi.org/10.25932/publishup-51266 ER - TY - THES A1 - Mubeen, Umarah T1 - Regulation of central carbon and nitrogen metabolism by Target of Rapamycin (TOR) kinase in Chlamydomonas reinhardtii T1 - Regulation des zentralen Kohlen- und Stickstoff Stoffwechsels durch die Target of Rapamycin Kinase in der Grünalge Chlamydomonas reinhardtii N2 - The highly conserved protein complex containing the Target of Rapamycin (TOR) kinase is known to integrate intra- and extra-cellular stimuli controlling nutrient allocation and cellular growth. This thesis describes three studies aimed to understand how TOR signaling pathway influences carbon and nitrogen metabolism in Chlamydomonas reinhardtii. The first study presents a time-resolved analysis of the molecular and physiological features across the diurnal cycle. The inhibition of TOR leads to 50% reduction in growth followed by nonlinear delays in the cell cycle progression. The metabolomics analysis showed that the growth repression is mainly driven by differential carbon partitioning between anabolic and catabolic processes. Furthermore, the high accumulation of nitrogen-containing compounds indicated that TOR kinase controls the carbon to nitrogen balance of the cell, which is responsible for biomass accumulation, growth and cell cycle progression. In the second study the cause of the high accumulation of amino acids is explained. For this purpose, the effect of TOR inhibition on Chlamydomonas was examined under different growth regimes using stable 13C- and 15N-isotope labeling. The data clearly showed that an increased nitrogen uptake is induced within minutes after the inhibition of TOR. Interestingly, this increased N-influx is accompanied by increased activities of nitrogen assimilating enzymes. Accordingly, it was concluded that TOR inhibition induces de-novo amino acid synthesis in Chlamydomonas. The recognition of this novel process opened an array of questions regarding potential links between central metabolism and TOR signaling. Therefore a detailed phosphoproteomics study was conducted to identify the potential substrates of TOR pathway regulating central metabolism. Interestingly, some of the key enzymes involved in carbon metabolism as well as amino acid synthesis exhibited significant changes in the phosphosite intensities immediately after TOR inhibition. Altogether, these studies provide a) detailed insights to metabolic response of Chlamydomonas to TOR inhibition, b) identification of a novel process causing rapid upshifts in amino acid levels upon TOR inhibition and c) finally highlight potential targets of TOR signaling regulating changes in central metabolism. Further biochemical and molecular investigations could confirm these observations and advance the understanding of growth signaling in microalgae. N2 - Target of Rapamycin (TOR) ist das Zentralprotein eines hochkonservierten Proteinkomplexes, welcher Nährstoff- und Energie Ressourcen für zelluläre Wachstumsprozesse kontengiert. Diese Doktorarbeit beschreibt anhand dreier Studien, wie TOR zu diesem Zweck, in der Grünalge Chlamydomonas reinhardtii, den zentralen Stoffwechsel reguliert. Die erste Studie untersucht dazu das zeitaufgelöste Verhalten von Biomolekülen im Tagesverlauf synchronisiert wachsender Algen. Dabei konnte gezeigt werden, das der TOR Inhibitor Rapamycin das Wachstum um 50% reduziert und den Zellzyklus verzögert. Die Zellzyklus Verzögerung scheint dabei hauptsächlich durch veränderte Stoffwechselprozesse erklärt zu sein. Hierbei konnte gezeigt werden, dass TOR vor allem stickstoffhaltige Stoffwechselprodukte (z.B. Aminosäuren) kontrolliert, welche die Grundlage für Biomasseproduktion, Wachstum und den Zellzyklus bilden. Im Rahmen der zweiten Studie konnte dann der molekulare Mechanismus der Akkumulation der zellulären Aminosäuren aufgeklärt werden. Zu diesem Zweck wurden Fütterungsstudien mit 13C- und 15N-Isotopen durchgeführt. Die Ergebnisse dieser Fütterung konnten klar zeigen, dass die Inhibition von TOR zur verstärkten Aufnahme von Stickstoff in die Zelle und dessen Assimilierung in Aminosäuren führt. Die Aufdeckung dieses neuen, von TOR gesteuerten Prozesses eröffnete somit die Frage, wie die Signalkaskade von TOR zu den Enzymen der Aminosäuresynthese verläuft. Detaillierte phosphoproteomische Studien sollten dieser Frage nachgehen und Zielprotein der TOR Kinase zu identifizieren und regulierte Stoffwechselprozesses zu finden. Dabei stellte sich heraus, dass sowohl verschiedene Enzyme der Aminosäuresynthese als auch Enzyme des zentralen Stoffwechsels innerhalb weniger Minuten stark verändert wurden. Zusammenfassend kann man festhalten das die vorliegende Arbeit detaillierte Stoffwechselanalysen des Stoffwechsels nach einer TOR Inhibition aufdeckt. Hierbei ein neuer Mechanismus zur Regulation der Aminosäuresynthese, nach TOR Inhibition gezeigt werden konnte, welche durch systemische Regulation der Phosphorylierungsmuster zellulärer Proteine kontrolliert wird. Zusätzliche molekulare und biochemische Studien konnten weiterhin zeigen, dass wie TOR das zelluläre Wachstum der photosynthetischen Grünalge kontrolliert und somit steuert. KW - Target of Rapamycin kinase KW - Growth signaling KW - metabolism KW - phosphoproteomics KW - Chlamydomonas KW - Target of Rapamycin kinase KW - Wachstumssignale KW - Stoffwechsel KW - Phosphoproteomik KW - Chlamydomonas Y1 - 2018 ER -