TY - JOUR A1 - Stoessel, Daniel A1 - Schulte, Claudia A1 - dos Santos, Marcia C. Teixeira A1 - Scheller, Dieter A1 - Rebollo-Mesa, Irene A1 - Deuschle, Christian A1 - Walther, Dirk A1 - Schauer, Nicolas A1 - Berg, Daniela A1 - da Costa, Andre Nogueira A1 - Maetzler, Walter T1 - Promising Metabolite Profiles in the Plasma and CSF of Early Clinical JF - Frontiers in Aging Neuroscience N2 - Parkinson's disease (PD) shows high heterogeneity with regard to the underlying molecular pathogenesis involving multiple pathways and mechanisms. Diagnosis is still challenging and rests entirely on clinical features. Thus, there is an urgent need for robust diagnostic biofluid markers. Untargeted metabolomics allows establishing low-molecular compound biomarkers in a wide range of complex diseases by the measurement of various molecular classes in biofluids such as blood plasma, serum, and cerebrospinal fluid (CSF). Here, we applied untargeted high-resolution mass spectrometry to determine plasma and CSF metabolite profiles. We semiquantitatively determined small-molecule levels (<= 1.5 kDa) in the plasma and CSF from early PD patients (disease duration 0-4 years; n = 80 and 40, respectively), and sex-and age-matched controls (n = 76 and 38, respectively). We performed statistical analyses utilizing partial least square and random forest analysis with a 70/30 training and testing split approach, leading to the identification of 20 promising plasma and 14 CSF metabolites. The semetabolites differentiated the test set with an AUC of 0.8 (plasma) and 0.9 (CSF). Characteristics of the metabolites indicate perturbations in the glycerophospholipid, sphingolipid, and amino acid metabolism in PD, which underscores the high power of metabolomic approaches. Further studies will enable to develop a potential metabolite-based biomarker panel specific for PD KW - biomarker KW - untargeted metabolomics KW - neurodegeneration KW - plasma KW - CSF KW - machinelearning Y1 - 2018 U6 - https://doi.org/10.3389/fnagi.2018.00051 SN - 1663-4365 VL - 10 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Castro, Jose Pedro A1 - Wardelmann, Kristina A1 - Grune, Tilman A1 - Kleinridders, Andre T1 - Mitochondrial Chaperones in the Brain BT - safeguarding Brain Health and Metabolism? JF - Frontiers in Endocrinology N2 - The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA) mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis), cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function) has been observed during aging, metabolic diseases such as type 2 diabetes and in neurode-generative diseases such as Alzheimer's (AD), Parkinson's (PD) or even Huntington's (HD) diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases. KW - insulin signaling KW - brain KW - chaperones KW - mitochondria homeostasis KW - mitochondrial dysfunction KW - neurodegeneration Y1 - 2018 U6 - https://doi.org/10.3389/fendo.2018.00196 SN - 1664-2392 VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - THES A1 - Stößel, Daniel T1 - Biomarker Discovery in Multiple Sclerosis and Parkinson’s disease T1 - Biomarkerentwicklung in Multiple Sklerose und der Parkinson-Krankheit BT - novel insights into metabolic disease mechanisms N2 - Neuroinflammatory and neurodegenerative diseases such as Parkinson's (PD) and multiple sclerosis (MS) often result in a severe impairment of the patient´s quality of life. Effective therapies for the treatment are currently not available, which results in a high socio-economic burden. Due to the heterogeneity of the disease subtypes, stratification is particularly difficult in the early phase of the disease and is mainly based on clinical parameters such as neurophysiological tests and central nervous imaging. Due to good accessibility and stability, blood and cerebrospinal fluid metabolite markers could serve as surrogates for neurodegenerative processes. This can lead to an improved mechanistic understanding of these diseases and further be used as "treatment response" biomarkers in preclinical and clinical development programs. Therefore, plasma and CSF metabolite profiles will be identified that allow differentiation of PD from healthy controls, association of PD with dementia (PDD) and differentiation of PD subtypes such as akinetic rigid and tremor dominant PD patients. In addition, plasma metabolites for the diagnosis of primary progressive MS (PPMS) should be investigated and tested for their specificity to relapsing-remitting MS (RRMS) and their development during PPMS progression. By applying untargeted high-resolution metabolomics of PD patient samples and in using random forest and partial least square machine learning algorithms, this study identified 20 plasma metabolites and 14 CSF metabolite biomarkers. These differentiate against healthy individuals with an AUC of 0.8 and 0.9 in PD, respectively. We also identify ten PDD specific serum metabolites, which differentiate against healthy individuals and PD patients without dementia with an AUC of 1.0, respectively. Furthermore, 23 akinetic-rigid specific plasma markers were identified, which differentiate against tremor-dominant PD patients with an AUC of 0.94 and against healthy individuals with an AUC of 0.98. These findings also suggest more severe disease pathology in the akinetic-rigid PD than in tremor dominant PD. In the analysis of MS patient samples a partial least square analysis yielded predictive models for the classification of PPMS and resulted in 20 PPMS specific metabolites. In another MS study unknown changes in human metabolism were identified after administration of the multiple sclerosis drug dimethylfumarate, which is used for the treatment of RRMS. These results allow to describe and understand the hitherto completely unknown mechanism of action of this new drug and to use these findings for the further development of new drugs and targets against RRMS. In conclusion, these results have the potential for improved diagnosis of these diseases and improvement of mechanistic understandings, as multiple deregulated pathways were identified. Moreover, novel Dimethylfumarate targets can be used to aid drug development and treatment efficiency. Overall, metabolite profiling in combination with machine learning identified as a promising approach for biomarker discovery and mode of action elucidation. N2 - Neuroinflammatorische and neurodegenerative Erkrankungen wie Parkinson (PD) und Multiple Sklerose (MS) gehen oft mit einer starken Beeinträchtigung der Lebensqualität einher. Effektive Therapien für die Behandlung sind derzeit nicht verfügbar, was nicht zuletzt eine hohe sozioökonomische Last zur Folge hat. Aufgrund der Heterogenität der Krankheitsbilder ist eine Stratifizierung gerade in der Frühphase der Erkrankung schwierig und basiert hauptsächlich auf klinischen Parametern wie bspw. neurophysiologischen Tests und bildgebenden Verfahren. Aufgrund ihrer guten Zugänglichkeit und Stabilität könnten bestimmte Blut- und Liquor-Metabolitenmarker als Surrogat für neurodegenerative Prozesse dienen, zu einem verbesserten mechanistischen Verständnis dieser Krankheiten führen und nicht zuletzt als “treatment response“ Biomarker in präklinischen und klinischen Entwicklungsprogrammen herangezogen werden. In dieser Arbeit sollten deshalb Plasma- und CSF-Metabolitprofile identifiziert werden, die eine Differenzierung von PD zu gesunden Kontrollen, Assoziierung zu PD mit Demenz (PDD) sowie eine Abgrenzung zu unterschiedlichen PD-Subtypen wie akinetisch-rigiden sowie tremor-dominanten PD-Patienten ermöglichen. Weiterhin wurden in dieser Arbeit Plasmametabolite zur Diagnose von primär-progressiver MS (PPMS) erforscht und auf ihre Spezifität gegenüber schubförmig remittierender MS (RRMS) und PD geprüft sowie deren Verlauf während der PPMS Progression getestet. Hierbei konnten durch “untargeted Metabolomics“ in Kombination mit statistischen Modellen mehrere Plasma- und CSF-Metabolite in PD-Patienten/Erkrankten ermittelt werden, die mit Hilfe von statistischen Diagnosemodellen eine Differenzierung zu gesunden Personen ermöglichen. Darüber hinaus wurden in dieser Arbeit PDD-spezifische Serummetabolite identifiziert, die wiederum genutzt werden können, um diesen PD-Typen von gesunden Individuen und PD-Patienten ohne Demenz abzugrenzen. Des Weiteren konnten bei akinetisch-rigiden PD-Patienten spezifische Metabolite entdeckt werden, die im Vergleich zu tremor-dominanten PD-Patienten eine stärkere metabolische Krankheitssymptomatik suggerieren. Im Zusammenhang mit PPMS wurden in dieser Arbeit spezifische Plasma-Metabolite entdeckt, die zur Diagnose gegen RRMS, PD und gesunden Kontrollen genutzt werden können. Interessanterweise zeigte dabei ein spezifisches Lipid geringere Werte im PPMS Krankheitsverlauf, wodurch sich dieses als möglicher Marker zur Progressionsdiagnostik dieser Krankheit qualifiziert. Abschließend konnten in dieser Arbeit im humanen Stoffwechsel bisher unbekannte Angriffspunkte des Medikaments Dimethylfumarat, das zur Behandlung von RRMS verwendet wird, ermittelt werden. Durch diese Ergebnisse kann der bis jetzt gänzlich unbekannte Wirkungsmechanismus dieses neuen Medikaments besser beschrieben und verstanden, sowie zur Weiterentwicklung neuer Medikamente gegen RRMS genutzt werden. KW - metabolomics KW - biomarker KW - multiple sclerosis KW - Parkinson's disease KW - neurodegeneration KW - neuroinflammation KW - machine-learning KW - Parkinson-Krankheit KW - Biomarker KW - Maschinelles-Lernen KW - Metabolomics KW - Multiple-Sklerose Y1 - 2018 ER - TY - GEN A1 - Castro, José Pedro A1 - Wardelmann, Kristina A1 - Grune, Tilman A1 - Kleinridders, André T1 - Mitochondrial chaperones in the brain BT - safeguarding brain health and metabolism? T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA) mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis), cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function) has been observed during aging, metabolic diseases such as type 2 diabetes and in neurode-generative diseases such as Alzheimer's (AD), Parkinson's (PD) or even Huntington's (HD) diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1031 KW - insulin signaling KW - brain KW - chaperones KW - mitochondria homeostasis KW - mitochondrial dysfunction KW - neurodegeneration Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-460650 SN - 1866-8372 IS - 1031 ER - TY - JOUR A1 - Kumar, Kevin K. A1 - Goodwin, Cody R. A1 - Uhouse, Michael A. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Aschner, Michael A. A1 - McLean, John A. A1 - Bowman, Aaron B. T1 - Untargeted metabolic profiling identifies interactions between Huntington's disease and neuronal manganese status JF - Metallomics N2 - Manganese (Mn) is an essential micronutrient for development and function of the nervous system. Deficiencies in Mn transport have been implicated in the pathogenesis of Huntington's disease (HD), an autosomal dominant neurodegenerative disorder characterized by loss of medium spiny neurons of the striatum. Brain Mn levels are highest in striatum and other basal ganglia structures, the most sensitive brain regions to Mn neurotoxicity. Mouse models of HD exhibit decreased striatal Mn accumulation and HD striatal neuron models are resistant to Mn cytotoxicity. We hypothesized that the observed modulation of Mn cellular transport is associated with compensatory metabolic responses to HD pathology. Here we use an untargeted metabolomics approach by performing ultraperformance liquid chromatography-ion mobility-mass spectrometry (UPLC-IM-MS) on control and HD immortalized mouse striatal neurons to identify metabolic disruptions under three Mn exposure conditions, low (vehicle), moderate (non-cytotoxic) and high (cytotoxic). Our analysis revealed lower metabolite levels of pantothenic acid, and glutathione (GSH) in HD striatal cells relative to control cells. HD striatal cells also exhibited lower abundance and impaired induction of isobutyryl carnitine in response to increasing Mn exposure. In addition, we observed induction of metabolites in the pentose shunt pathway in HD striatal cells after high Mn exposure. These findings provide metabolic evidence of an interaction between the HD genotype and biologically relevant levels of Mn in a striatal cell model with known HD by Mn exposure interactions. The metabolic phenotypes detected support existing hypotheses that changes in energetic processes underlie the pathobiology of both HD and Mn neurotoxicity. KW - hallervorden-spatz-syndrome KW - mobility-mass spectrometry KW - energy-metabolism KW - coenzyme-a KW - model KW - neurotoxicity KW - glutathione KW - database KW - cells KW - neurodegeneration Y1 - 2015 U6 - https://doi.org/10.1039/C4MT00223G SN - 1756-591X SN - 1756-5901 VL - 7 SP - 363 EP - 370 PB - RSC Publ. CY - Cambridge ER - TY - GEN A1 - Kumar, Kevin K. A1 - Goodwin, Cody R. A1 - Uhouse, Michael A. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Aschner, Michael A. A1 - McLean, John A. A1 - Bowman, Aaron B. T1 - Untargeted metabolic profiling identifies interactions between Huntington's disease and neuronal manganese status N2 - Manganese (Mn) is an essential micronutrient for development and function of the nervous system. Deficiencies in Mn transport have been implicated in the pathogenesis of Huntington's disease (HD), an autosomal dominant neurodegenerative disorder characterized by loss of medium spiny neurons of the striatum. Brain Mn levels are highest in striatum and other basal ganglia structures, the most sensitive brain regions to Mn neurotoxicity. Mouse models of HD exhibit decreased striatal Mn accumulation and HD striatal neuron models are resistant to Mn cytotoxicity. We hypothesized that the observed modulation of Mn cellular transport is associated with compensatory metabolic responses to HD pathology. Here we use an untargeted metabolomics approach by performing ultraperformance liquid chromatography-ion mobility-mass spectrometry (UPLC-IM-MS) on control and HD immortalized mouse striatal neurons to identify metabolic disruptions under three Mn exposure conditions, low (vehicle), moderate (non-cytotoxic) and high (cytotoxic). Our analysis revealed lower metabolite levels of pantothenic acid, and glutathione (GSH) in HD striatal cells relative to control cells. HD striatal cells also exhibited lower abundance and impaired induction of isobutyryl carnitine in response to increasing Mn exposure. In addition, we observed induction of metabolites in the pentose shunt pathway in HD striatal cells after high Mn exposure. These findings provide metabolic evidence of an interaction between the HD genotype and biologically relevant levels of Mn in a striatal cell model with known HD by Mn exposure interactions. The metabolic phenotypes detected support existing hypotheses that changes in energetic processes underlie the pathobiology of both HD and Mn neurotoxicity. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 232 KW - cells KW - coenzyme-a KW - database KW - energy-metabolism KW - glutathione KW - hallervorden-spatz-syndrome KW - mobility-mass spectrometry KW - model KW - neurodegeneration KW - neurotoxicity Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-94314 SP - 363 EP - 370 ER -