TY - JOUR A1 - Jiang, Wei A1 - Tao, Chen A1 - Stolterfoht, Martin A1 - Jin, Hui A1 - Stephen, Meera A1 - Lin, Qianqian A1 - Nagiri, Ravi C. R. A1 - Burn, Paul L. A1 - Gentle, Ian R. T1 - Hole-transporting materials for low donor content organic solar cells BT - charge transport and device performance JF - Organic electronics : physics, materials and applications N2 - Low donor content solar cells are an intriguing class of photovoltaic device about which there is still considerable discussion with respect to their mode of operation. We have synthesized a series of triphenylamine-based materials for use in low donor content devices with the electron accepting [6,6]-phenyl-C71-butyric acid methyl ester (PC(7)0BM). The triphenylamine-based materials absorb light in the near UV enabling the PC(7)0BM to be be the main light absorbing organic semiconducting material in the solar cell. It was found that the devices did not operate as classical Schottky junctions but rather photocurrent was generated by hole transfer from the photo-excited PC(7)0BM to the triphenylamine-based donors. We found that replacing the methoxy surface groups with methyl groups on the donor material led to a decrease in hole mobility for the neat films, which was due to the methyl substituted materials having the propensity to aggregate. The thermodynamic drive to aggregate was advantageous for the performance of the low donor content (6 wt%) films. It was found that the 6 wt% donor devices generally gave higher performance than devices containing 50 wt% of the donor. KW - photoexcited hole transfer KW - photocurrent generation KW - synthesis KW - hole KW - mobility KW - low donor content KW - Schottky junction Y1 - 2020 U6 - https://doi.org/10.1016/j.orgel.2019.105480 SN - 1566-1199 SN - 1878-5530 VL - 76 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Shoaee, Safa A1 - Stolterfoht, Martin A1 - Neher, Dieter T1 - The Role of Mobility on Charge Generation, Recombination, and Extraction in Polymer-Based Solar Cells JF - dvanced energy materials N2 - Organic semiconductors are of great interest for a broad range of optoelectronic applications due to their solution processability, chemical tunability, highly scalable fabrication, and mechanical flexibility. In contrast to traditional inorganic semiconductors, organic semiconductors are intrinsically disordered systems and therefore exhibit much lower charge carrier mobilities-the Achilles heel of organic photovoltaic cells. In this progress review, the authors discuss recent important developments on the impact of charge carrier mobility on the charge transfer state dissociation, and the interplay of free charge extraction and recombination. By comparing the mobilities on different timescales obtained by different techniques, the authors highlight the dispersive nature of these materials and how this reflects on the key processes defining the efficiency of organic photovoltaics. KW - charge generation KW - charge recombination KW - extraction KW - mobility KW - organic solar cells KW - polymer:fullerene bulk heterojunction Y1 - 2018 U6 - https://doi.org/10.1002/aenm.201703355 SN - 1614-6832 SN - 1614-6840 VL - 8 IS - 28 PB - Wiley-VCH CY - Weinheim ER -