TY - JOUR A1 - Pinyou, Piyanut A1 - Ruff, Adrian A1 - Poeller, Sascha A1 - Alsaoub, Sabine A1 - Leimkühler, Silke A1 - Wollenberger, Ursula A1 - Schuhmann, Wolfgang T1 - Wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces via entrapment in low potential phenothiazine-modified redox polymers JF - Bioelectrochemistry : an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry ; official journal of the Bioelectrochemical Society N2 - Phenothiazine-modified redox hydrogels were synthesized and used for the wiring of the aldehyde oxidoreductase PaoABC to electrode surfaces. The effects of the pH value and electrode surface modification on the biocatalytic activity of the layers were studied in the presence of vanillin as the substrate. The enzyme electrodes were successfully employed as bioanodes in vanillin/O-2 biofuel cells in combination with a high potential bilirubin oxidase biocathode. Open circuit voltages of around 700 mV could be obtained in a two compartment biofuel cell setup. Moreover, the use of a rather hydrophobic polymer with a high degree of crosslinking sites ensures the formation of stable polymer/enzyme films which were successfully used as bioanode in membrane-less biofuel cells. (C) 2015 Elsevier B.V. All rights reserved. KW - Aldehyde oxidoreductase KW - Enzyme electrode KW - Redox polymer KW - Phenothiazine KW - Biosensor KW - Biofuel cell Y1 - 2016 U6 - https://doi.org/10.1016/j.bioelechem.2015.12.005 SN - 1567-5394 SN - 1878-562X VL - 109 SP - 24 EP - 30 PB - Elsevier CY - Lausanne ER - TY - THES A1 - Fandrich, Artur T1 - Untersuchung des Verhaltens von thermoresponsiven Polymeren auf Elektroden in Interaktion mit biomolekularen Systemen T1 - Investigation of the behavior of thermoresponsive polymers on electrodes in interaction with biomolecular systems N2 - Diese Arbeit befasst sich mit der Herstellung und Charakterisierung von thermoresponsiven Filmen auf Goldelektroden durch Fixierung eines bereits synthetisierten thermoresponsiven Polymers. Als Basis für die Entwicklung der responsiven Grenzfläche dienten drei unterschiedliche Copolymere (Polymere I, II und III) aus der Gruppe der thermisch schaltbaren Poly(oligo(ethylenglykol)methacrylate). Die turbidimetrischen Messungen der Copolymere in Lösungen haben gezeigt, dass der Trübungspunkt vom pH-Wert, der Gegenwart von Salzen sowie von der Ionenstärke der Lösung abhängig ist. Nach der Charakterisierung der Polymere in Lösung wurden Experimente der kovalenten Kopplung der Polymere I bis III an die Oberfläche der Gold-Elektroden durchgeführt. Während bei Polymeren I und II die Ankopplung auf einer Amidverbrückung basierte, wurde bei Polymer III als alternative Methode zur Immobilisierung eine photoinduzierte Anbindung unter gleichzeitiger Vernetzung gewählt. Der Nachweis der erfolgreichen Ankopplung erfolgte bei allen Polymeren elektrochemisch mittels Cyclovoltammetrie und Impedanzspektroskopie in K3/4[Fe(CN)6]-Lösungen. Wie die Ellipsometrie-Messungen zeigten, waren die erhaltenen Polymer-Filme unterschiedlich dick. Die Ankopplung über Amidverbrückung lieferte dünne Filme (10 – 15 nm), während der photovernetzte Film deutlich dicker war (70-80 nm) und die darunter liegende Oberfläche relativ gut isolierte. Elektrochemische Temperaturexperimente an Polymer-modifizierten Oberflächen in Lösungen in Gegenwart von K3/4[Fe(CN)6] zeigten, dass auch die immobilisierten Polymere I bis III responsives Temperaturverhalten zeigen. Bei Elektroden mit den immobilisierten Polymeren I und II ist der Temperaturverlauf der Parameterwerte diskontinuierlich – ab einem kritischen Punkt (37 °C für Polymer I und 45 °C für Polymer II) wird zunächst langsame Zunahme der Peakströme wird deutlich schneller. Das Temperaturverhalten von Polymer III ist dagegen bis 50 °C kontinuierlich, der Peakstrom sinkt hier durchgehend. Weiterhin wurde mit den auf Polymeren II und III basierten Elektroden deren Anwendung als responsive Matrix für Bioerkennungsreaktionen untersucht. Es wurde die Ankopplung von kleinen Biorezeptoren, TAG-Peptiden, an Polymer II- und Polymer III-modifizierten Elektroden durchgeführt. Das hydrophile FLAG-TAG-Peptid verändert das Temperaturverhalten des Polymer II-Films unwesentlich, da es die Hydrophilie des Netzwerkes nicht beeinflusst. Weiterhin wurde der Effekt der Ankopplung der ANTI-FLAG-TAG-Antikörper an FLAG-TAG-modifizierte Polymer II-Filme untersucht. Es konnte gezeigt werden, dass die Antikörper spezifisch an FLAG-TAG-modifiziertes Polymer II binden. Es wurde keine unspezifische Anbindung von ANTI-FLAG-TAG an Polymer II beobachtet. Die Temperaturexperimente haben gezeigt, dass die thermische Restrukturierung des Polymer II-FLAG-TAG-Filmes auch nach der Antikörper-Ankopplung noch stattfindet. Der Einfluss der ANTI-FLAG-TAG-Ankopplung ist gering, da der Unterschied in der Hydrophilie zwischen Polymer II und FLAG-TAG bzw. ANTI-FLAG-TAG zu gering ist. Für die Untersuchungen mit Polymer III-Elektroden wurde neben dem hydrophilen FLAG-TAG-Peptid das deutlich hydrophobere HA-TAG-Peptid ausgewählt. Wie im Falle der Polymer II Elektrode beeinflusst das gekoppelte FLAG-TAG-Peptid das Temperaturverhalten des Polymer III-Netzwerkes nur geringfügig. Die gemessenen Stromwerte sind geringer als bei der Polymer III-Elektrode. Das Temperaturverhalten der FLAG-TAG-Elektrode ähnelt dem der reinen Polymer III-Elektrode – die Stromwerte sinken kontinuierlich bis die Temperatur von ca. 40 °C erreicht ist, bei der ein Plateau beobachtet wird. Offensichtlich verändert FLAG-TAG auch in diesem Fall nicht wesentlich die Hydrophilie des Polymer III-Netzwerkes. Das an Polymer III-Elektroden gekoppelte hydrophobe HA-TAG-Peptid beeinflusst dagegen im starken Maße den Quellzustand des Netzwerkes. Die Ströme für die HA-TAG-Elektroden sind deutlich geringer als die für die FLAG-TAG-Polymer III-Elektroden, was auf geringeren Wassergehalt und dickeren Film zurückzuführen ist. Bereits ab 30 °C erfolgt der Anstieg von Stromwerten, der bei Polymer III- bzw. bei Polymer III-FLAG-TAG-Elektroden nicht beobachtet werden kann. Das gekoppelte hydrophobe HA-TAG-Peptid verdrängt Wasser aus dem Polymer III-Netzwerk, was in der Stauchung des Films bereits bei Raumtemperatur resultiert. Dies führt dazu, dass der Film im Laufe des Temperaturanstieges kaum noch komprimiert. Die Stromwerte steigen in diesem Fall entsprechend des Anstiegs der temperaturabhängigen Diffusion des Redoxpaares. Diese Untersuchungen zeigen, dass das HA-TAG-Peptid als Ankermolekül deutlich besser für eine potentielle Verwendung der Polymer III-Filme für sensorische Zwecke geeignet ist, da es sich deutlich in der Hydrophilie von Polymer III unterscheidet. N2 - This work describes the immobilization and characterization of thermoresponsive polymer films on gold electrodes. The immobilized films were thermoresponsive copolymers (polymers I, II and III) from the group of poly(oligo(ethylene glycol)methacrylates). After the synthesis, the aqueous solutions of copolymers in presence of (buffering) salts were investigated. The turbidimetry measurements revealed that the responsive behaviour of the polymers strongly depends on the pH and the ionic strength of the solution. After the studies in the solution, experiments on the covalent immobilization of the polymers on gold electrodes were performed. The fixation strategy for the polymers I and II was based on the amide coupling. The polymer III was immobilized by irradiation with UV-light. The successful immobilization was proved by cyclic voltammetry and electrochemical impedance spectroscopy measurements in solutions containing K3/4[Fe(CN)6]. The ellipsometry measurements showed that the obtained films were of different thickness. Polymer I and II films obtained from the amide coupling were thinner (10 – 15 nm) compared to photolytically immobilized polymer III films (70-80 nm). Electrochemical temperature experiments on polymer modified electrodes in K3/4[Fe(CN)6] solutions showed that the polymer I, II and III retain the responsivity after the fixation on the electrode surface. The thermoresponsive behaviour of the thin polymer I and II films is discontinuous – after the achieving of the critical temperature point (37 °C for polymer I and 45 °C for polymer II) the increase of the peak currents changes significantly and becomes faster hinting at the restructuration process. In contrast to this the temperature behaviour of the polymer III films is continuous in the temperature range between 25 and 50 °C. The peak currents for the polymer III electrodes decrease with increasing temperature. Furthermore, the application of polymer II and polymer III surfaces as a responsive platform for bio-recognition reactions was investigated. For this purpose, the coupling of small bioreceptors (tag peptides) on polymer films was performed. It was found that the hydrophilic FLAG-TAG peptide does not significantly alter the temperature behaviour of the polymer II film because it does not affect the hydrophilicity of the network. Additionally, the effect of coupling the ANTI-FLAG-TAG antibodies to FLAG-TAG-modified polymer II films was investigated. It was shown that the antibodies specifically bind to FLAG-TAG-modified polymer II. No nonspecific binding of ANTI-FLAG-TAG to polymer II was observed. The temperature experiments have shown that the thermal restructuring of the polymer II-FLAG-TAG film still takes place after antibody coupling. The influence of ANTI-FLAG-TAG coupling is low, since the difference in the hydrophilicity between polymer II and FLAG-TAG or ANTI-FLAG-TAG is too low. In addition to the hydrophilic FLAG-TAG peptide, the significantly more hydrophobic HA-TAG peptide was selected for the investigations with polymer III electrodes. As in the case of the polymer II electrode, the coupled FLAG-TAG peptide only slightly affects the temperature behaviour of the polymer III network. The measured current values are lower than for the polymer III electrode. The temperature behaviour of the FLAG-TAG electrode resembles that of the pure polymer III electrode - the current values sink continuously until the temperature of approx. 40 ° C is reached, at which a plateau is observed. Obviously, FLAG-TAG does not significantly alter the hydrophilicity of the polymer III network even in this case. The hydrophobic HA-TAG peptide coupled to polymer III electrodes, on the other hand, strongly influences the swelling state of the network. The currents for the HA-TAG electrodes are significantly lower than those for the FLAG-TAG polymer III electrodes, which is due to lower water content and thicker film. The increase in current values occurs at temperatures as low as 30 ° C, which cannot be observed with polymer III or with polymer III FLAG TAG electrodes. The coupled hydrophobic HA-TAG peptide displaces water from the polymer III network, resulting in the compression of the film even at room temperature. As a result, the film hardly compresses during the temperature rise. The current values increase in this case according to the increase in the temperature-dependent diffusion of the redox pair. These studies show that the HA-TAG peptide as an anchoring molecule is much better suited for a potential use of the polymer III films for sensory purposes since it is clearly different in the hydrophilicity of polymer III. KW - thermoresponsiv KW - Polymer KW - Biosensor KW - Cyclovoltammetrie KW - Elektrochemie KW - thermoresponsive KW - polymer KW - biosensor KW - cyclic voltammetry KW - electrochemistry Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396551 ER - TY - THES A1 - Naseri, Gita T1 - Plant-derived transcription factors and their application for synthetic biology approaches in Saccharomyces cerevisiae T1 - Pflanzenbasierte Transkriptionsfaktoren und ihre Anwendungen in der synthetischen Biologie in Saccharomyces cerevisiae N2 - Bereits seit 9000 Jahren verwendet die Menschheit die Bäckerhefe Saccharomyces cerevisiae für das Brauen von Bier, aber erst seit 150 Jahren wissen wir, dass es sich bei diesem unermüdlichen Helfer im Brauprozess um einzellige, lebende Organismen handelt. Und die Bäckerhefe kann noch viel mehr. Im Rahmen des Forschungsgebietes der Synthetischen Biologie soll unter anderem die Bäckerhefe als innovatives Werkzeug für die biobasierte Herstellung verschiedenster Substanzen etabliert werden. Zu diesen Substanzen zählen unter anderem Feinchemikalien, Biokraftstoffe und Biopolymere sowie pharmakologisch und medizinisch interessante Pflanzenstoffe. Damit diese verschiedensten Substanzen in der Bäckerhefe hergestellt werden können, müssen große Mengen an Produktionsinformationen zum Beispiel aus Pflanzen in die Hefezellen übertragen werden. Darüber hinaus müssen die neu eingebrachten Biosynthesewege reguliert und kontrolliert in den Zellen ablaufen. Auch Optimierungsprozesse zur Erhöhung der Produktivität sind notwendig. Für alle diese Arbeitsschritte mangelt es bis heute an anwendungsbereiten Technologien und umfassenden Plattformen. Daher wurden im Rahmen dieser Doktorarbeit verschiedene Technologien und Plattformen zur Informationsübertragung, Regulation und Prozessoptimierung geplant und erzeugt. Für die Konstruktion von Biosynthesewegen in der Bäckerhefe wurde als erstes eine Plattform aus neuartigen Regulatoren und Kontrollelementen auf der Basis pflanzlicher Kontrollelemente generiert und charakterisiert. Im zweiten Schritt erfolgte die Entwicklung einer Technologie zur kombinatorischen Verwendung der Regulatoren in der Planung und Optimierung von Biosynthesewegen (COMPASS). Abschließend wurde eine Technologie für die Prozessoptimierung der veränderten Hefezellen entwickelt (CapRedit). Die Leistungsfähigkeit der entwickelten Plattformen und Technologien wurde durch eine Optimierung der Produktion von Carotenoiden (Beta-Carotin und Beta-Ionon) und Flavonoiden (Naringenin) in Hefezellen nachgewiesen. Die im Rahmen der Arbeit etablierten neuartigen Plattformen und innovativen Technologien sind ein wertvoller Grundbaustein für die Erweiterung der Nutzbarkeit der Bäckerhefe. Sie ermöglichen den Einsatz der Hefezellen in kosteneffizienten Produktionswegen und alternativen chemischen Wertschöpfungsketten. Dadurch können zum Beispiel Biokraftstoffe und pharmakologisch interessante Pflanzenstoffe unter Verwendung von nachwachsenden Rohstoffen, Reststoffen und Nebenprodukten hergestellt werden. Darüber hinaus ergeben sich Anwendungsmöglichkeiten zur Bodensanierung und Wasseraufbereitung. N2 - Plant-derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects where tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harbouring cognate cis-regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver / reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast, than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC - EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF – DNA-binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast. COMPASS: Rapid combinatorial optimization of biochemical pathways based on artificial transcription factors We established a high-throughput cloning method, called COMPASS for COMbinatorial Pathway ASSembly, for the balanced expression of multiple genes in Saccharomyces cerevisiae. COMPASS employs orthogonal, plant-derived artificial transcription factors (ATFs) for controlling the expression of pathway genes, and homologous recombination-based cloning for the generation of thousands of individual DNA constructs in parallel. The method relies on a positive selection of correctly assembled pathway variants from both, in vivo and in vitro cloning procedures. To decrease the turnaround time in genomic engineering, we equipped COMPASS with multi-locus CRISPR/Cas9-mediated modification capacity. In its current realization, COMPASS allows combinatorial optimization of up to ten pathway genes, each transcriptionally controlled by nine different ATFs spanning a 10-fold difference in expression strength. The application of COMPASS was demonstrated by generating cell libraries producing beta-carotene and co-producing beta-ionone and biosensor-responsive naringenin. COMPASS will have many applications in other synthetic biology projects that require gene expression balancing. CaPRedit: Genome editing using CRISPR-Cas9 and plant-derived transcriptional regulators for the redirection of flux through the FPP branch-point in yeast. Technologies developed over the past decade have made Saccharomyces cerevisiae a promising platform for production of different natural products. We developed CRISPR/Ca9- and plant derived regulator-mediated genome editing approach (CaPRedit) to greatly accelerate strain modification and to facilitate very low to very high expression of key enzymes using inducible regulators. CaPRedit can be implemented to enhance the production of yeast endogenous or heterologous metabolites in the yeast S. cerevisiae. The CaPRedit system aims to faciltiate modification of multiple targets within a complex metabolic pathway through providing new tools for increased expression of genes encoding rate-limiting enzymes, decreased expression of essential genes, and removed expression of competing pathways. This approach is based on CRISPR/Cas9-mediated one-step double-strand breaks to integrate modules containing IPTG-inducible plant-derived artificial transcription factor and promoter pair(s) in a desired locus or loci. Here, we used CaPRedit to redirect the yeast endogenous metabolic flux toward production of farnesyl diphosphate (FPP), a central precursor of nearly all yeast isoprenoid products, by overexpression of the enzymes lead to produce FPP from glutamate. We found significantly higher beta-carotene accumulation in the CaPRedit-mediated modified strain than in the wild type (WT) strain. More specifically, CaPRedit_FPP 1.0 strain was generated, in which three genes involved in FPP synthesis, tHMG1, ERG20, and GDH2, were inducibly overexpressed under the control of strong plant-derived ATFPs. The beta–carotene accumulated in CaPRedit_FPP 1.0 strain to a level 1.3-fold higher than the previously reported optimized strain that carries the same overexpressed genes (as well as additional genetic modifications to redirect yeast endogenous metabolism toward FPP production). Furthermore, the genetic modifications implemented in CaPRedit_FPP 1.0 strain resulted in only a very small growth defect (growth rate relative to the WT is ~ -0.03). KW - synthetic biology KW - Saccharomyces cerevisiae KW - artificial transcription factor KW - combinatorial optimization KW - biosensor KW - DNA assembly KW - pathway engineering KW - artifizielle Transkriptionsfaktoren KW - Biosensor KW - kombinatorische Optimierung KW - DNA assembly KW - Saccharomyces cerevisiae KW - synthetische Biologie KW - pathway engineering Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-421514 ER - TY - JOUR A1 - Polley, Nabarun A1 - Basak, Supratim A1 - Hass, Roland A1 - Pacholski, Claudia T1 - Fiber optic plasmonic sensors BT - Providing sensitive biosensor platforms with minimal lab equipment JF - Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics N2 - A simple, convenient, and inexpensive method to fabricate optical fiber based biosensors which utilize periodic hole arrays in gold films for signal transduction is reported. The process of hole array formation mainly relies on self-assembly of hydrogel microgels in combination with chemical gold film deposition and subsequent transfer of the perforated film onto an optical fiber tip. In the fabrication process solely chemical wet lab techniques are used, avoiding cost-intensive instrumentation or clean room facilities. The presented method for preparing fiber optic plasmonic sensors provides high throughput and is perfectly suited for commercialization using batch processing. The transfer of the perforated gold film onto an optical fiber tip does not affect the sensitivity of the biosensor ((420 +/- 83) nm/refractive index unit (RIU)), which is comparable to sensitivities of sensor platforms based on periodic hole arrays in gold films prepared by significantly more complex methods. Furthermore, real-time and in-line immunoassay studies with a specially designed 3D printed flow cell are presented exploiting the presented optical fiber based biosensors. KW - Surface plasmon resonance KW - Optical fiber KW - Bottom-up fabrication KW - Biosensor KW - 3D printed flow-cell Y1 - 2019 U6 - https://doi.org/10.1016/j.bios.2019.03.020 SN - 0956-5663 SN - 1873-4235 VL - 132 SP - 368 EP - 374 PB - Elsevier CY - Oxford ER -