TY - THES A1 - Li, Zhen T1 - Formation of Sub-Permafrost Methane Hydrate Reproduced by Numerical Modeling BT - Insights from LArge-scale Reservoir Simulator (LARS) to Mallik Site, Canadian Arctic N2 - Natural gas hydrates are ice-like crystalline compounds containing water cavities that trap natural gas molecules like methane (CH4), which is a potent greenhouse gas with high energy density. The Mallik site at the Mackenzie Delta in the Canadian Arctic contains a large volume of technically recoverable CH4 hydrate beneath the base of the permafrost. Understanding how the sub-permafrost hydrate is distributed can aid in searching for the ideal locations for deploying CH4 production wells to develop the hydrate as a cleaner alternative to crude oil or coal. Globally, atmospheric warming driving permafrost thaw results in sub-permafrost hydrate dissociation, releasing CH4 into the atmosphere to intensify global warming. It is therefore crucial to evaluate the potential risk of hydrate dissociation due to permafrost degradation. To quantitatively predict hydrate distribution and volume in complex sub-permafrost environments, a numerical framework was developed to simulate sub-permafrost hydrate formation by coupling the equilibrium CH4-hydrate formation approach with a fluid flow and transport simulator (TRANSPORTSE). In addition, integrating the equations of state describing ice melting and forming with TRANSPORTSE enabled this framework to simulate the permafrost evolution during the sub-permafrost hydrate formation. A modified sub-permafrost hydrate formation mechanism for the Mallik site is presented in this study. According to this mechanism, the CH4-rich fluids have been vertically transported since the Late Pleistocene from deep overpressurized zones via geologic fault networks to form the observed hydrate deposits in the Kugmallit–Mackenzie Bay Sequences. The established numerical framework was verified by a benchmark of hydrate formation via dissolved methane. Model calibration was performed based on laboratory data measured during a multi-stage hydrate formation experiment undertaken in the LArge scale Reservoir Simulator (LARS). As the temporal and spatial evolution of simulated and observed hydrate saturation matched well, the LARS model was therefore validated. This laboratory-scale model was then upscaled to a field-scale 2D model generated from a seismic transect across the Mallik site. The simulation confirmed the feasibility of the introduced sub-permafrost hydrate formation mechanism by demonstrating consistency with field observations. The 2D model was extended to the first 3D model of the Mallik site by using well-logs and seismic profiles, to investigate the geologic controls on the spatial hydrate distribution. An assessment of this simulation revealed the hydraulic contribution of each geological element, including relevant fault networks and sedimentary sequences. Based on the simulation results, the observed heterogeneous distribution of sub-permafrost hydrate resulted from the combined factors of the source-gas generation rate, subsurface temperature, and the permeability of geologic elements. Analysis of the results revealed that the Mallik permafrost was heated by 0.8–1.3 °C, induced by the global temperature increase of 0.44 °C and accelerated by Arctic amplification from the early 1970s to the mid-2000s. This study presents a numerical framework that can be applied to study the formation of the permafrost-hydrate system from laboratory to field scales, across timescales ranging from hours to millions of years. Overall, these simulations deepen the knowledge about the dominant factors controlling the spatial hydrate distribution in sub-permafrost environments with heterogeneous geologic elements. The framework can support improving the design of hydrate formation experiments and provide valuable contributions to future industrial hydrate exploration and exploitation activities. N2 - Gashydrate sind eisähnliche kristalline Verbindungen, die Moleküle wie Methan (CH4) in Hohlräumen einschließen. Die Mallik-Lagerstätte im Mackenzie-Delta in der kanadischen Arktis enthält ein großes Volumen an technisch förderbarem CH4-Hydrat unter dem Permafrostboden. Das Verständnis, wie die Hydrate verteilt sind, kann bei der Suche nach idealen Standorten für Förderbohrungen zu ihrer Erschließung als saubere Alternative zu Erdöl oder Kohle helfen. Weltweit führt die Erwärmung der Atmosphäre zum Auftauen des Permafrosts und zur Zersetzung der Hydrate, wodurch CH4 in die Atmosphäre freigesetzt und die globale Erwärmung verstärkt wird. Es ist also entscheidend, das potenzielle Risiko der Hydratauflösung aufgrund der Permafrostdegradation zu bewerten. Um die Verteilung und das Volumen von Hydraten in komplexen Sub-Permafrost Umgebungen quantitativ vorherzusagen, wurde ein numerischer Ansatz zur Simulation entwickelt. Hierzu wurde der Gleichgewichtsansatz für die CH4-Hydratbildung mit einem Strömungs- und Transportsimulator (TRANSPORTSE) kombiniert. Die zusätzliche Integrierung der Zustandsgleichungen, die das Schmelzen und die Bildung von Eis beschreiben, ermöglichte die Simulation der Permafrostentwicklung während der Hydratbildung. Für den Standort Mallik wird ein modifizierter Bildungsmechanismus in dieser Studie beschrieben. Demzufolge wurden die CH4-reichen Fluide seit dem späten Pleistozän aus tiefen Überdruckszonen vertikal über geologische Verwerfungssysteme transportiert, und haben die Hydratvorkommen gebildet. Der numerische Ansatz wurde anhand eines Benchmarks zur Hydratbildung verifiziert. Messdaten eines mehrstufigen Hydratbildungsexperiments im LArge scale Reservoir Simulator (LARS) dienten zur Kalibrierung. Basierend auf der guten Übereinstimmung zwischen der simulierten und beobachteten Hydratsättigung, wurde das LARS-Modell validiert. Im Anschluss erfolgte die Übertragung auf ein 2D-Modell im Feldmaßstab, das mithilfe einer seismischen Transekte durch den Mallik-Standort erstellt wurde. Die Übereinstimmung mit den Feldbeobachtungen bestätigte den beschriebenen Mechanismus zur Hydratbildung unterhalb des Permafrosts. Das 2D-Modell wurde basierend auf Bohrlochprotokollen und seismischen Profilen zum ersten 3D-Modell des Mallik-Standorts erweitert, um die geologischen Einflüsse auf die Hydratverteilung zu untersuchen. Die Auswertung verdeutlichte den Beitrag jedes geologischen Elements zum hydraulischen System, einschließlich relevanter Verwerfungssysteme und sedimentärer Abfolgen. Die beobachtete heterogene räumliche Verteilung der Hydrate ist auf die Gasproduktionsrate der Quelle, die Untergrundtemperatur und die Durchlässigkeit der geologischen Einheiten zurückzuführen. Die Analyse der Ergebnisse ergab, dass der Mallik-Permafrost um 0,8–1,3 °C erwärmt wurde, was durch den globalen Temperaturanstieg von 0,44 °C verursacht und durch die sogenannte polare Verstärkung seit Anfang der 1970er bis Mitte der 2000er Jahre beschleunigt wurde. Der in dieser Studie entwickelte numerische Ansatz zur Bildung von Permafrost-Hydrat-Systemen kann vom Labor- bis zum Feldmaßstab und über Zeitskalen von Stunden bis zu Millionen von Jahren angewendet werden. Mit den Simulationen konnten die dominierenden Faktoren identifiziert werden, welche die räumliche Hydratverteilung in Umgebungen mit heterogenen geologischen Strukturen steuern. Der Ansatz kann die Planung von Hydratbildungsexperimenten verbessern und einen wertvollen Beitrag für zukünftige industrielle Hydraterkundungen- und -erschließungen leisten. T2 - Bildung von Sub-Permafrost-Methanhydraten dargestellt durch numerische Modellierung: Erkenntnisse aus dem LArge-sclae Reservoir Simulator (LARS), angewandt auf den Mallik-Standort, Kanadische Arktis KW - methane hydrate KW - geologic fault KW - numerical simulation KW - hydrate formation KW - climate change KW - Mackenzie Delta KW - Mackenzie-Delta KW - Klimawandel KW - geologische Verwerfung KW - Hydratbildung KW - Methanhydrat KW - numerische Simulation Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-603302 ER - TY - THES A1 - Seyberth, Karl T1 - Test einer neuen Methode zur Synthetisierung hydrathaltiger Sedimentproben und Charakterisierung des Hydrathabitus anhand seismischer Messungen T1 - Test of a new method for the synthesis of hydrate bearing sediment samples and characterization of the hydrate habitus based on seismic measurements N2 - Methanhydrate sind besonders in Verbindung mit den steigenden Weltmarktpreisen für Öl und Gas in den vergangenen Jahren mehr und mehr in den Fokus der Energiewirtschaft geraten, was zu einer starken Zunahme der angewandten Forschungsprojekte auf diesem Gebiet führte. Da Methanhydrat nur unter hohem Druck und niedrigen Temperaturen stabil ist, ist die Gewinnung natürlicher Proben für Laboruntersuchungen technisch sehr aufwendig und vor allem teuer. Zur Charakterisierung der Eigenschaften hydratführender Reservoire ist man häufig auf die Herstellung synthetischer Proben angewiesen. Die Eigenschaften der synthetisierten Proben sind dabei abhängig von der Herstellungsmethode und man ist noch immer auf der Suche nach Verfahren, mit denen sich möglichst „naturnahe“ Proben mit vertretbarem Aufwand erzeugen lassen. In der vorliegenden Arbeit wurde eine neue, relativ schnell durchführbare Methode getestet, die im Porenraum von Sedimenten schwimmende bzw. gefügestützende Hydrate bildet, wie sie in der Natur vorkommen. Gleichzeitig erzeugt sie eine gleichmäßige Verteilung des Hydrats über die Probe und bietet gute Kontrolle über den Hydratgehalt. Sie funktioniert wie folgt: Eine mit einer KCl-Lösung gesättigte Sedimentprobe wird zu einem bestimmten Teil ausgefroren und das übrige Wasser mit Methan verdrängt. Durch Anlegen eines Methandrucks im Stabilitätsbereich wird das Eis zu Methanhydrat umgesetzt. Im Anschluss wird die Probe erneut mit einer KCl-Lösung gesättigt. Anhand seismischer Messungen konnte bestätigt werden, dass Hydrat mit dem gewünschten Hydrathabitus erzeugt wurde. Des Weiteren wurde gezeigt, dass die eishaltigen Proben aufgrund ähnlicher physikalischer Eigenschaften bereits vor der Umsetzung des Eises zu Methanhydrat als Näherung für Proben mit Porenraumhydrat verwendet werden können. N2 - Due to the rising world market prices for oil and gas, the energy industry pays more and more attention to methane hydrates. This leads to a strong augmentation of applied research projects in this field of studies. As methane hydrates are only stable under large pressure and low temperatures, the recovery of samples is technically very complex and expensive. Hence, for the characterization of the properties of hydrate bearing reservoirs, usually synthetic samples are used. The properties of these synthesized samples depend on the production method and scientists are still searching for procedures that allow the synthesization of close to nature samples at a justifiable effort. In this paper, a relatively quickly performable new method was tested that produces hydrates floating in the pore space respectively grain supporting hydrates. These are the most common types of gas hydrates in natural environments. Furthermore the method forms a uniform distribution across the sample and allows a good control over the hydrate content. It works as follows: A sediment sample saturated with a KCl-solution is frozen until a certain ice content is reached and the remaining brine is pushed out with methane. Then the ice is converted into methane hydrate by the installation of methane pressure in the stability field. In the end the methane is replaced by a KCl-solution again. With the help of seismic measurements it could be proven that the hydrate showed the desired properties. Besides that it was shown that yet before the transformation of ice to methane hydrate one can use the ice-containing samples as an approximation for the hydrate-bearing samples. Both show similar physical properties. KW - Methanhydrat KW - methane hydrate KW - synthetic hydrate samples KW - synthetische Hydratproben KW - seismische Messungen KW - seismic measurements KW - Hydrathabitus KW - hydrate habitus Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-81247 ER -