TY - JOUR A1 - Thieken, Annegret A1 - Apel, Heiko A1 - Merz, Bruno T1 - Assessing the probability of large-scale flood loss events: a case study for the river Rhine, Germany JF - Journal of flood risk management N2 - Flood risk analyses are often estimated assuming the same flood intensity along the river reach under study, i.e. discharges are calculated for a number of return periods T, e.g. 10 or 100 years, at several streamflow gauges. T-year discharges are regionalised and then transferred into T-year water levels, inundated areas and impacts. This approach assumes that (1) flood scenarios are homogeneous throughout a river basin, and (2) the T-year damage corresponds to the T-year discharge. Using a reach at the river Rhine, this homogeneous approach is compared with an approach that is based on four flood types with different spatial discharge patterns. For each type, a regression model was created and used in a Monte-Carlo framework to derive heterogeneous scenarios. Per scenario, four cumulative impact indicators were calculated: (1) the total inundated area, (2) the exposed settlement and industrial areas, (3) the exposed population and 4) the potential building loss. Their frequency curves were used to establish a ranking of eight past flood events according to their severity. The investigation revealed that the two assumptions of the homogeneous approach do not hold. It tends to overestimate event probabilities in large areas. Therefore, the generation of heterogeneous scenarios should receive more attention. KW - damage estimation KW - discharge pattern KW - exposure KW - flood risk analysis KW - frequency analysis KW - land-use KW - population density Y1 - 2015 U6 - https://doi.org/10.1111/jfr3.12091 SN - 1753-318X VL - 8 IS - 3 SP - 247 EP - 262 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Penone, Caterina A1 - Allan, Eric A1 - Soliveres, Santiago A1 - Felipe-Lucia, Maria R. A1 - Gossner, Martin M. A1 - Seibold, Sebastian A1 - Simons, Nadja K. A1 - Schall, Peter A1 - van der Plas, Fons A1 - Manning, Peter A1 - Manzanedo, Ruben D. A1 - Boch, Steffen A1 - Prati, Daniel A1 - Ammer, Christian A1 - Bauhus, Juergen A1 - Buscot, Francois A1 - Ehbrecht, Martin A1 - Goldmann, Kezia A1 - Jung, Kirsten A1 - Mueller, Joerg A1 - Mueller, Joerg C. A1 - Pena, Rodica A1 - Polle, Andrea A1 - Renner, Swen C. A1 - Ruess, Liliane A1 - Schoenig, Ingo A1 - Schrumpf, Marion A1 - Solly, Emily F. A1 - Tschapka, Marco A1 - Weisser, Wolfgang W. A1 - Wubet, Tesfaye A1 - Fischer, Markus T1 - Specialisation and diversity of multiple trophic groups are promoted by different forest features JF - Ecology letters N2 - While forest management strongly influences biodiversity, it remains unclear how the structural and compositional changes caused by management affect different community dimensions (e.g. richness, specialisation, abundance or completeness) and how this differs between taxa. We assessed the effects of nine forest features (representing stand structure, heterogeneity and tree composition) on thirteen above- and belowground trophic groups of plants, animals, fungi and bacteria in 150 temperate forest plots differing in their management type. Canopy cover decreased light resources, which increased community specialisation but reduced overall diversity and abundance. Features increasing resource types and diversifying microhabitats (admixing of oaks and conifers) were important and mostly affected richness. Belowground groups responded differently to those aboveground and had weaker responses to most forest features. Our results show that we need to consider forest features rather than broad management types and highlight the importance of considering several groups and community dimensions to better inform conservation. KW - biodiversity exploratories KW - dark diversity KW - forest management KW - global change KW - land-use KW - multidiversity KW - specialisation KW - temperate forests Y1 - 2018 U6 - https://doi.org/10.1111/ele.13182 SN - 1461-023X SN - 1461-0248 VL - 22 IS - 1 SP - 170 EP - 180 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Langerwisch, Fanny A1 - Walz, Ariane A1 - Rammig, Anja A1 - Tietjen, Britta A1 - Thonicke, Kirsten A1 - Cramer, Wolfgang T1 - Deforestation in Amazonia impacts riverine carbon dynamics T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Fluxes of organic and inorganic carbon within the Amazon basin are considerably controlled by annual flooding, which triggers the export of terrigenous organic material to the river and ultimately to the Atlantic Ocean. The amount of carbon imported to the river and the further conversion, transport and export of it depend on temperature, atmospheric CO2, terrestrial productivity and carbon storage, as well as discharge. Both terrestrial productivity and discharge are influenced by climate and land use change. The coupled LPJmL and RivCM model system (Langerwisch et al., 2016) has been applied to assess the combined impacts of climate and land use change on the Amazon riverine carbon dynamics. Vegetation dynamics (in LPJmL) as well as export and conversion of terrigenous carbon to and within the river (RivCM) are included. The model system has been applied for the years 1901 to 2099 under two deforestation scenarios and with climate forcing of three SRES emission scenarios, each for five climate models. We find that high deforestation (business-as-usual scenario) will strongly decrease (locally by up to 90 %) riverine particulate and dissolved organic carbon amount until the end of the current century. At the same time, increase in discharge leaves net carbon transport during the first decades of the century roughly unchanged only if a sufficient area is still forested. After 2050 the amount of transported carbon will decrease drastically. In contrast to that, increased temperature and atmospheric CO2 concentration determine the amount of riverine inorganic carbon stored in the Amazon basin. Higher atmospheric CO2 concentrations increase riverine inorganic carbon amount by up to 20% (SRES A2). The changes in riverine carbon fluxes have direct effects on carbon export, either to the atmosphere via outgassing or to the Atlantic Ocean via discharge. The outgassed carbon will increase slightly in the Amazon basin, but can be regionally reduced by up to 60% due to deforestation. The discharge of organic carbon to the ocean will be reduced by about 40% under the most severe deforestation and climate change scenario. These changes would have local and regional consequences on the carbon balance and habitat characteristics in the Amazon basin itself as well as in the adjacent Atlantic Ocean. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 535 KW - Global vegetation model KW - Climate-Change KW - Brazilian Amazon KW - organic-matter KW - land-use KW - secondary forests KW - seed dispersal KW - Atlantic-Ocean KW - basin KW - CO2 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-410225 SN - 1866-8372 IS - 535 ER -