TY - GEN A1 - Plöhn, Svenja A1 - Edelmann, Bärbel A1 - Japtok, Lukasz A1 - He, Xingxuan A1 - Hose, Matthias A1 - Hansen, Wiebke A1 - Schuchman, Edward H. A1 - Eckstein, Anja A1 - Berchner-Pfannschmidt, Utta T1 - CD40 enhances sphingolipids in orbital fibroblasts BT - potential role of sphingosine-1-phosphate in inflammatory T-cell migration in Graves' orbitopathy T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - PURPOSE. Graves' orbitopathy (GO) is an autoimmune orbital disorder associated with Graves' disease caused by thyrotropin receptor autoantibodies. Orbital fibroblasts (OFs) and CD40 play a key role in disease pathogenesis. The bioactive lipid sphingosine-1-phosphate (S1P) has been implicated in promoting adipogenesis, fibrosis, and inflammation in OFs. We investigated the role of CD40 signaling in inducing S1P activity in orbital inflammation. METHODS. OFs and T cells were derived from GO patients and healthy control (Ctl) persons. S1P abundance in orbital tissues was evaluated by immunofluorescence. OFs were stimulated with CD40 ligand and S1P levels were determined by ELISA. Further, activities of acid sphingomyelinase (ASM), acid ceramidase, and sphingosine kinase were measured by ultraperformance liquid chromatography. Sphingosine and ceramide contents were analyzed by mass spectrometry. Finally, the role for S1P in T-cell attraction was investigated by T-cell migration assays. RESULTS. GO orbital tissue showed elevated amounts of S1P as compared to control samples. Stimulation of CD40 induced S1P expression in GO-derived OFs, while Ctl-OFs remained unaffected. A significant increase of ASM and sphingosine kinase activities, as well as lipid formation, was observed in GO-derived OFs. Migration assay of T cells in the presence of SphK inhibitor revealed that S1P released by GO-OFs attracted T cells for migration. CONCLUSIONS. The results demonstrated that CD40 ligand stimulates GO fibroblast to produce S1P, which is a driving force for T-cell migration. The results support the use of S1P receptor signaling modulators in GO management. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1099 KW - Grave’s orbitopathy KW - sphingosine-1-phosphate KW - sphingolipids KW - inflammation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468837 SN - 1866-8372 IS - 1099 ER - TY - GEN A1 - Krupkova, Olga A1 - Sadowska, Aleksandra A1 - Kameda, Takuya A1 - Hitzl, Wolfgang A1 - Hausmann, Oliver Nic A1 - Klasen, Jürgen A1 - Wuertz-Kozak, Karin T1 - p38 MaPK facilitates crosstalk between endoplasmic reticulum stress and IL-6 release in the intervertebral Disc T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Degenerative disc disease is associated with increased expression of pro-inflammatory cytokines in the intervertebral disc (IVD). However, it is not completely clear how inflammation arises in the IVD and which cellular compartments are involved in this process. Recently, the endoplasmic reticulum (ER) has emerged as a possible modulator of inflammation in age-related disorders. In addition, ER stress has been associated with the microenvironment of degenerated IVDs. Therefore, the aim of this study was to analyze the effects of ER stress on inflammatory responses in degenerated human IVDs and associated molecular mechanisms. Gene expression of ER stress marker GRP78 and pro-inflammatory cytokines IL-6, IL-8, IL-1 beta, and TNF-alpha was analyzed in human surgical IVD samples (n = 51, Pfirrmann grade 2-5). The expression of GRP78 positively correlated with the degeneration grade in lumbar IVDs and IL-6, but not with IL-1 beta and TNF-alpha. Another set of human surgical IVD samples (n = 25) was used to prepare primary cell cultures. ER stress inducer thapsigargin (Tg, 100 and 500 nM) activated gene and protein expression of IL-6 and induced phosphorylation of p38 MAPK. Both inhibition of p38 MAPK by SB203580 (10 mu M) and knockdown of ER stress effector CCAAT-enhancer-binding protein homologous protein (CHOP) reduced gene and protein expression of IL-6 in Tg-treated cells. Furthermore, the effects of an inflammatory microenvironment on ER stress were tested. TNF-alpha (5 and 10 ng/mL) did not activate ER stress, while IL-1 beta (5 and 10 ng/mL) activated gene and protein expression of GRP78, but did not influence [Ca2+](i) flux and expression of CHOP, indicating that pro-inflammatory cytokines alone may not induce ER stress in vivo. This study showed that IL-6 release in the IVD can be initiated following ER stress and that ER stress mediates IL-6 release through p38 MAPK and CHOP. Therapeutic targeting of ER stress response may reduce the consequences of the harsh microenvironment in degenerated IVD. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 705 KW - intervertebral disc KW - inflammation KW - endoplasmic reticulum stress KW - p38 MAPK KW - CHOP KW - GADD153 KW - GRP78 KW - IL-6 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468698 SN - 1866-8364 IS - 705 ER - TY - GEN A1 - Henkel, Janin A1 - Alfine, Eugenia A1 - Saín, Juliana A1 - Jöhrens, Korinna A1 - Weber, Daniela A1 - Castro, José Pedro A1 - König, Jeannette A1 - Stuhlmann, Christin A1 - Vahrenbrink, Madita A1 - Jonas, Wenke A1 - Kleinridders, André A1 - Püschel, Gerhard Paul T1 - Soybean Oil-Derived Poly-Unsaturated Fatty Acids Enhance Liver Damage in NAFLD Induced by Dietary Cholesterol T2 - Nutrients N2 - While the impact of dietary cholesterol on the progression of atherosclerosis has probably been overestimated, increasing evidence suggests that dietary cholesterol might favor the transition from blunt steatosis to non-alcoholic steatohepatitis (NASH), especially in combination with high fat diets. It is poorly understood how cholesterol alone or in combination with other dietary lipid components contributes to the development of lipotoxicity. The current study demonstrated that liver damage caused by dietary cholesterol in mice was strongly enhanced by a high fat diet containing soybean oil-derived ω6-poly-unsaturated fatty acids (ω6-PUFA), but not by a lard-based high fat diet containing mainly saturated fatty acids. In contrast to the lard-based diet the soybean oil-based diet augmented cholesterol accumulation in hepatocytes, presumably by impairing cholesterol-eliminating pathways. The soybean oil-based diet enhanced cholesterol-induced mitochondrial damage and amplified the ensuing oxidative stress, probably by peroxidation of poly-unsaturated fatty acids. This resulted in hepatocyte death, recruitment of inflammatory cells, and fibrosis, and caused a transition from steatosis to NASH, doubling the NASH activity score. Thus, the recommendation to reduce cholesterol intake, in particular in diets rich in ω6-PUFA, although not necessary to reduce the risk of atherosclerosis, might be sensible for patients suffering from non-alcoholic fatty liver disease. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 479 KW - non-alcoholic fatty liver disease (NAFLD) KW - NASH KW - cholesterol KW - PUFA KW - inflammation KW - oxidative stress Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419773 ER - TY - GEN A1 - Krupkova, Olga A1 - Smolders, Lucas A1 - Wuertz-Kozak, Karin A1 - Cook, James A1 - Pozzi, Antonio T1 - The pathobiology of the meniscus BT - a comparison between the human and dog T2 - Frontiers in Veterinary Science N2 - Serious knee pain and related disability have an annual prevalence of approximately 25% on those over the age of 55 years. As curative treatments for the common knee problems are not available to date, knee pathologies typically progress and often lead to osteoarthritis (OA). While the roles that the meniscus plays in knee biomechanics are well characterized, biological mechanisms underlying meniscus pathophysiology and roles in knee pain and OA progression are not fully clear. Experimental treatments for knee disorders that are successful in animal models often produce unsatisfactory results in humans due to species differences or the inability to fully replicate disease progression in experimental animals. The use of animals with spontaneous knee pathologies, such as dogs, can significantly help addressing this issue. As microscopic and macroscopic anatomy of the canine and human menisci are similar, spontaneous meniscal pathologies in canine patients are thought to be highly relevant for translational medicine. However, it is not clear whether the biomolecular mechanisms of pain, degradation of extracellular matrix, and inflammatory responses are species dependent. The aims of this review are (1) to provide an overview of the anatomy, physiology, and pathology of the human and canine meniscus, (2) to compare the known signaling pathways involved in spontaneous meniscus pathology between both species, and (3) to assess the relevance of dogs with spontaneous meniscal pathology as a translational model. Understanding these mechanisms in human and canine meniscus can help to advance diagnostic and therapeutic strategies for painful knee disorders and improve clinical decision making. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 677 KW - meniscus KW - inflammation KW - oxidative stress KW - pain KW - dog Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-460868 SN - 1866-8364 IS - 677 ER -