TY - JOUR A1 - Kallmeyer, Jens A1 - Pockalny, Robert A1 - Adhikari, Rishi Ram A1 - Smith, David C. A1 - D'Hondt, Steven T1 - Global distribution of microbial abundance and biomass in subseafloor sediment JF - Proceedings of the National Academy of Sciences of the United States of America N2 - The global geographic distribution of subseafloor sedimentary microbes and the cause(s) of that distribution are largely unexplored. Here, we show that total microbial cell abundance in subseafloor sediment varies between sites by ca. five orders of magnitude. This variation is strongly correlated with mean sedimentation rate and distance from land. Based on these correlations, we estimate global subseafloor sedimentary microbial abundance to be 2.9 center dot 10(29) cells [corresponding to 4.1 petagram (Pg) C and similar to 0.6% of Earth's total living biomass]. This estimate of subseafloor sedimentary microbial abundance is roughly equal to previous estimates of total microbial abundance in seawater and total microbial abundance in soil. It is much lower than previous estimates of subseafloor sedimentary microbial abundance. In consequence, we estimate Earth's total number of microbes and total living biomass to be, respectively, 50-78% and 10-45% lower than previous estimates. KW - deep biosphere KW - cell enumeration KW - global microbial biomass KW - subsurface life Y1 - 2012 U6 - https://doi.org/10.1073/pnas.1203849109 SN - 0027-8424 VL - 109 IS - 40 SP - 16213 EP - 16216 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Roy, Hans A1 - Kallmeyer, Jens A1 - Adhikari, Rishi Ram A1 - Pockalny, Robert A1 - Jorgensen, Bo Barker A1 - D'Hondt, Steven T1 - Aerobic microbial respiration in 86-million-year-old deep-sea red clay JF - Science N2 - Microbial communities can subsist at depth in marine sediments without fresh supply of organic matter for millions of years. At threshold sedimentation rates of 1 millimeter per 1000 years, the low rates of microbial community metabolism in the North Pacific Gyre allow sediments to remain oxygenated tens of meters below the sea floor. We found that the oxygen respiration rates dropped from 10 micromoles of O-2 liter(-1) year(-1) near the sediment-water interface to 0.001 micromoles of O-2 liter(-1) year(-1) at 30-meter depth within 86 million-year-old sediment. The cell-specific respiration rate decreased with depth but stabilized at around 10(-3) femtomoles of O-2 cell(-1) day(-1) 10 meters below the seafloor. This result indicated that the community size is controlled by the rate of carbon oxidation and thereby by the low available energy flux. Y1 - 2012 U6 - https://doi.org/10.1126/science.1219424 SN - 0036-8075 VL - 336 IS - 6083 SP - 922 EP - 925 PB - American Assoc. for the Advancement of Science CY - Washington ER -