TY - JOUR A1 - Levermann, Anders A1 - Albrecht, Tanja A1 - Winkelmann, Ricarda A1 - Martin, Maria A. A1 - Haseloff, Monika A1 - Joughin, I. T1 - Kinematic first-order calving law implies potential for abrupt ice-shelf retreat JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - Recently observed large-scale disintegration of Antarctic ice shelves has moved their fronts closer towards grounded ice. In response, ice-sheet discharge into the ocean has accelerated, contributing to global sea-level rise and emphasizing the importance of calving-front dynamics. The position of the ice front strongly influences the stress field within the entire sheet-shelf-system and thereby the mass flow across the grounding line. While theories for an advance of the ice-front are readily available, no general rule exists for its retreat, making it difficult to incorporate the retreat in predictive models. Here we extract the first-order large-scale kinematic contribution to calving which is consistent with large-scale observation. We emphasize that the proposed equation does not constitute a comprehensive calving law but represents the first-order kinematic contribution which can and should be complemented by higher order contributions as well as the influence of potentially heterogeneous material properties of the ice. When applied as a calving law, the equation naturally incorporates the stabilizing effect of pinning points and inhibits ice shelf growth outside of embayments. It depends only on local ice properties which are, however, determined by the full topography of the ice shelf. In numerical simulations the parameterization reproduces multiple stable fronts as observed for the Larsen A and B Ice Shelves including abrupt transitions between them which may be caused by localized ice weaknesses. We also find multiple stable states of the Ross Ice Shelf at the gateway of the West Antarctic Ice Sheet with back stresses onto the sheet reduced by up to 90 % compared to the present state. Y1 - 2012 U6 - https://doi.org/10.5194/tc-6-273-2012 SN - 1994-0416 VL - 6 IS - 2 SP - 273 EP - 286 PB - Copernicus CY - Göttingen ER - TY - THES A1 - Martin, Maria A. T1 - Numerical simulation of the Antartic ice sheet and its dynamic response to external pertubations Y1 - 2012 CY - Potsdam ER - TY - JOUR A1 - Winkelmann, Ricarda A1 - Levermann, Anders A1 - Martin, Maria A. A1 - Frieler, Katja T1 - Increased future ice discharge from Antarctica owing to higher snowfall JF - Nature : the international weekly journal of science N2 - Anthropogenic climate change is likely to cause continuing global sea level rise(1), but some processes within the Earth system may mitigate the magnitude of the projected effect. Regional and global climate models simulate enhanced snowfall over Antarctica, which would provide a direct offset of the future contribution to global sea level rise from cryospheric mass loss(2,3) and ocean expansion(4). Uncertainties exist in modelled snowfall(5), but even larger uncertainties exist in the potential changes of dynamic ice discharge from Antarctica(1,6) and thus in the ultimate fate of the precipitation-deposited ice mass. Here we show that snowfall and discharge are not independent, but that future ice discharge will increase by up to three times as a result of additional snowfall under global warming. Our results, based on an ice-sheet model(7) forced by climate simulations through to the end of 2500 (ref. 8), show that the enhanced discharge effect exceeds the effect of surface warming as well as that of basal ice-shelf melting, and is due to the difference in surface elevation change caused by snowfall on grounded versus floating ice. Although different underlying forcings drive ice loss from basal melting versus increased snowfall, similar ice dynamical processes are nonetheless at work in both; therefore results are relatively independent of the specific representation of the transition zone. In an ensemble of simulations designed to capture ice-physics uncertainty, the additional dynamic ice loss along the coastline compensates between 30 and 65 per cent of the ice gain due to enhanced snowfall over the entire continent. This results in a dynamic ice loss of up to 1.25 metres in the year 2500 for the strongest warming scenario. The reported effect thus strongly counters a potential negative contribution to global sea level by the Antarctic Ice Sheet. Y1 - 2012 U6 - https://doi.org/10.1038/nature11616 SN - 0028-0836 VL - 492 IS - 7428 SP - 239 EP - + PB - Nature Publ. Group CY - London ER -