TY - THES A1 - Bremer, Anne T1 - Structural and functional characterization of three closely related intrinsically disordered proteins from the model plant Arabidopsiis thaliana Y1 - 2017 ER - TY - JOUR A1 - Bremer, Anne A1 - Kent, Ben A1 - Hauss, Thomas A1 - Thalhammer, Anja A1 - Yepuri, Nageshwar R. A1 - Darwish, Tamim A. A1 - Garvey, Christopher J. A1 - Bryant, Gary A1 - Hincha, Dirk K. T1 - Intrinsically Disordered Stress Protein COR15A Resides at the Membrane Surface during Dehydration JF - Biophysical journal N2 - Plants from temperate climate zones are able to increase their freezing tolerance during exposure to low, above zero temperatures in a process termed cold acclimation. During this process, several cold-regulated (COR) proteins are accumulated in the cells. One of them is COR15A, a small, intrinsically disordered protein that contributes to leaf freezing tolerance by stabilizing cellular membranes. The isolated protein folds into amphipathic a-helices in response to increased crowding conditions, such as high concentrations of glycerol. Although there is evidence for direct COR15A-membrane interactions, the orientation and depth of protein insertion were unknown. In addition, although folding due to high osmolyte concentrations had been established, the folding response of the protein under conditions of gradual dehydration had not been investigated. Here we show, using Fourier transform infrared spectroscopy, that COR15A starts to fold into a-helices already under mild dehydration conditions (97% relative humidity (RH), corresponding to freezing at -3 degrees C) and that folding gradually increases with decreasing RH. Neutron diffraction experiments at 97 and 75% RH established that the presence of COR15A had no significant influence on the structure of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes. However, using deuterated POPC we. could clearly establish that COR15A interacts with the membranes and penetrates below the headgroup region into the upper part of the fatty acyl chain region. This localization is in agreement with our hypothesis that COR15A-membrane interaction is at least, in part, driven by a hydrophobic interaction between the lipids and the hydrophobic face of the amphipathic protein alpha-helix. Y1 - 2017 U6 - https://doi.org/10.1016/j.bpj.2017.06.027 SN - 0006-3495 SN - 1542-0086 VL - 113 SP - 572 EP - 579 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Bremer, Anne A1 - Wolff, Martin A1 - Thalhammer, Anja A1 - Hincha, Dirk K. T1 - Folding of intrinsically disordered plant LEA proteins is driven by glycerol-induced crowding and the presence of membranes JF - The FEBS journal N2 - Late embryogenesis abundant (LEA) proteins are related to cellular dehydration tolerance. Most LEA proteins are predicted to have no stable secondary structure in solution, i.e., to be intrinsically disordered proteins (IDPs), but they may acquire alpha-helical structure upon drying. In the model plant Arabidopsis thaliana, the LEA proteins COR15A and COR15B are highly induced upon cold treatment and are necessary for the plants to attain full freezing tolerance. Freezing leads to increased intracellular crowding due to dehydration by extracellular ice crystals. In vitro, crowding by high glycerol concentrations induced partial folding of COR15 proteins. Here, we have extended these investigations to two related proteins, LEA11 and LEA25. LEA25 is much longer than LEA11 and COR15A, but shares a conserved central sequence domain with the other two proteins. We have created two truncated versions of LEA25 (2H and 4H) to elucidate the structural and functional significance of this domain. Light scattering and CD spectroscopy showed that all five proteins were largely unstructured and monomeric in dilute solution. They folded in the presence of increasing concentrations of trifluoroethanol and glycerol. Additional folding was observed in the presence of glycerol and membranes. Fourier transform infra red spectroscopy revealed an interaction of the LEA proteins with membranes in the dry state leading to a depression in the gel to liquid-crystalline phase transition temperature. Liposome stability assays revealed a cryoprotective function of the proteins. The C- and N-terminal extensions of LEA25 were important in cryoprotection, as the central domain itself (2H, 4H) only provided a low level of protection. KW - intrinsically disordered proteins KW - late embryogenesis abundant proteins KW - osmolytes KW - protein folding KW - protein-membrane interaction Y1 - 2017 U6 - https://doi.org/10.1111/febs.14023 SN - 1742-464X SN - 1742-4658 VL - 284 SP - 919 EP - 936 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Knox-Brown, Patrick A1 - Rindfleisch, Tobias A1 - Günther, Anne A1 - Balow, Kim A1 - Bremer, Anne A1 - Walther, Dirk A1 - Miettinen, Markus S. A1 - Hincha, Dirk K. A1 - Thalhammer, Anja T1 - Similar Yet Different BT - Structural and Functional Diversity among Arabidopsis thaliana LEA_4 Proteins JF - International Journal of Molecular Sciences N2 - The importance of intrinsically disordered late embryogenesis abundant (LEA) proteins in the tolerance to abiotic stresses involving cellular dehydration is undisputed. While structural transitions of LEA proteins in response to changes in water availability are commonly observed and several molecular functions have been suggested, a systematic, comprehensive and comparative study of possible underlying sequence-structure-function relationships is still lacking. We performed molecular dynamics (MD) simulations as well as spectroscopic and light scattering experiments to characterize six members of two distinct, lowly homologous clades of LEA_4 family proteins from Arabidopsis thaliana. We compared structural and functional characteristics to elucidate to what degree structure and function are encoded in LEA protein sequences and complemented these findings with physicochemical properties identified in a systematic bioinformatics study of the entire Arabidopsis thaliana LEA_4 family. Our results demonstrate that although the six experimentally characterized LEA_4 proteins have similar structural and functional characteristics, differences concerning their folding propensity and membrane stabilization capacity during a freeze/thaw cycle are obvious. These differences cannot be easily attributed to sequence conservation, simple physicochemical characteristics or the abundance of sequence motifs. Moreover, the folding propensity does not appear to be correlated with membrane stabilization capacity. Therefore, the refinement of LEA_4 structural and functional properties is likely encoded in specific patterns of their physicochemical characteristics. KW - IDP KW - LEA protein KW - abiotic stress KW - dehydration KW - conformational rearrangement KW - membrane stabilization KW - sequence-structure-function relationship Y1 - 2020 U6 - https://doi.org/10.3390/ijms21082794 SN - 1422-0067 VL - 21 IS - 8 PB - Molecular Diversity Preservation International CY - Basel ER - TY - GEN A1 - Knox-Brown, Patrick A1 - Rindfleisch, Tobias A1 - Günther, Anne A1 - Balow, Kim A1 - Bremer, Anne A1 - Walther, Dirk A1 - Miettinen, Markus S. A1 - Hincha, Dirk K. A1 - Thalhammer, Anja T1 - Similar Yet Different BT - Structural and Functional Diversity among Arabidopsis thaliana LEA_4 Proteins T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The importance of intrinsically disordered late embryogenesis abundant (LEA) proteins in the tolerance to abiotic stresses involving cellular dehydration is undisputed. While structural transitions of LEA proteins in response to changes in water availability are commonly observed and several molecular functions have been suggested, a systematic, comprehensive and comparative study of possible underlying sequence-structure-function relationships is still lacking. We performed molecular dynamics (MD) simulations as well as spectroscopic and light scattering experiments to characterize six members of two distinct, lowly homologous clades of LEA_4 family proteins from Arabidopsis thaliana. We compared structural and functional characteristics to elucidate to what degree structure and function are encoded in LEA protein sequences and complemented these findings with physicochemical properties identified in a systematic bioinformatics study of the entire Arabidopsis thaliana LEA_4 family. Our results demonstrate that although the six experimentally characterized LEA_4 proteins have similar structural and functional characteristics, differences concerning their folding propensity and membrane stabilization capacity during a freeze/thaw cycle are obvious. These differences cannot be easily attributed to sequence conservation, simple physicochemical characteristics or the abundance of sequence motifs. Moreover, the folding propensity does not appear to be correlated with membrane stabilization capacity. Therefore, the refinement of LEA_4 structural and functional properties is likely encoded in specific patterns of their physicochemical characteristics. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 901 KW - IDP KW - LEA protein KW - abiotic stress KW - dehydration KW - conformational rearrangement KW - membrane stabilization KW - sequence-structure-function relationship Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-469419 SN - 1866-8372 IS - 901 ER - TY - JOUR A1 - Navarro-Retamal, Carlos A1 - Bremer, Anne A1 - Alzate-Morales, Jans H. A1 - Caballero, Julio A1 - Hincha, Dirk K. A1 - Gonzalez, Wendy A1 - Thalhammer, Anja T1 - Molecular dynamics simulations and CD spectroscopy reveal hydration-induced unfolding of the intrinsically disordered LEA proteins COR15A and COR15B from Arabidopsis thaliana JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The LEA (late embryogenesis abundant) proteins COR15A and COR15B from Arabidopsis thaliana are intrinsically disordered under fully hydrated conditions, but obtain alpha-helical structure during dehydration, which is reversible upon rehydration. To understand this unusual structural transition, both proteins were investigated by circular dichroism (CD) and molecular dynamics (MD) approaches. MD simulations showed unfolding of the proteins in water, in agreement with CD data obtained with both HIS-tagged and untagged recombinant proteins. Mainly intramolecular hydrogen bonds (H-bonds) formed by the protein backbone were replaced by H-bonds with water molecules. As COR15 proteins function in vivo as protectants in leaves partially dehydrated by freezing, unfolding was further assessed under crowded conditions. Glycerol reduced (40%) or prevented (100%) unfolding during MD simulations, in agreement with CD spectroscopy results. H-bonding analysis indicated that preferential exclusion of glycerol from the protein backbone increased stability of the folded state. Y1 - 2016 U6 - https://doi.org/10.1039/c6cp02272c SN - 1463-9076 SN - 1463-9084 VL - 18 SP - 25806 EP - 25816 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Navarro-Retamal, Carlos A1 - Bremer, Anne A1 - Alzate-Morales, Jans H. A1 - Caballero, Julio A1 - Hincha, Dirk K. A1 - González, Wendy A1 - Thalhammer, Anja T1 - Molecular dynamics simulations and CD spectroscopy reveal hydration-induced unfolding of the intrinsically disordered LEA proteins COR15A and COR15B from Arabidopsis thaliana N2 - The LEA (late embryogenesis abundant) proteins COR15A and COR15B from Arabidopsis thaliana are intrinsically disordered under fully hydrated conditions, but obtain α-helical structure during dehydration, which is reversible upon rehydration. To understand this unusual structural transition, both proteins were investigated by circular dichroism (CD) and molecular dynamics (MD) approaches. MD simulations showed unfolding of the proteins in water, in agreement with CD data obtained with both HIS-tagged and untagged recombinant proteins. Mainly intramolecular hydrogen bonds (H-bonds) formed by the protein backbone were replaced by H-bonds with water molecules. As COR15 proteins function in vivo as protectants in leaves partially dehydrated by freezing, unfolding was further assessed under crowded conditions. Glycerol reduced (40%) or prevented (100%) unfolding during MD simulations, in agreement with CD spectroscopy results. H-bonding analysis indicated that preferential exclusion of glycerol from the protein backbone increased stability of the folded state. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 321 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394503 SP - 25806 EP - 25816 ER - TY - JOUR A1 - Navarro-Retamal, Carlos A1 - Bremer, Anne A1 - Ingolfsson, Helgi I. A1 - Alzate-Morales, Jans A1 - Caballero, Julio A1 - Thalhammer, Anja A1 - Gonzalez, Wendy A1 - Hincha, Dirk K. T1 - Folding and Lipid Composition Determine Membrane Interaction of the Disordered Protein COR15A JF - Biophysical journal N2 - Plants from temperate climates, such as the model plant Arabidopsis thaliana, are challenged with seasonal low temperatures that lead to increased freezing tolerance in fall in a process termed cold acclimation. Among other adaptations, this involves the accumulation of cold-regulated (COR) proteins, such as the intrinsically disordered chloroplast-localized protein COR15A. Together with its close homolog COR15B, it stabilizes chloroplast membranes during freezing. COR15A folds into amphipathic alpha-helices in the presence of high concentrations of low-molecular-mass crowders or upon dehydration. Under these conditions, the (partially) folded protein binds peripherally to membranes. In our study, we have used coarse-grained molecular dynamics simulations to elucidate the details of COR15A-membrane binding and its effects on membrane structure and dynamics. Simulation results indicate that at least partial folding of COR15A and the presence of highly unsaturated galactolipids in the membranes are necessary for efficient membrane binding. The bound protein is stabilized on the membrane by interactions of charged and polar amino acids with galactolipid headgroups and by interactions of hydrophobic amino acids with the upper part of the fatty acyl chains. Experimentally, the presence of liposomes made from a mixture of lipids mimicking chloroplast membranes induces additional folding in COR15A under conditions of partial dehydration, in agreement with the simulation results. Y1 - 2018 U6 - https://doi.org/10.1016/j.bpj.2018.08.014 SN - 0006-3495 SN - 1542-0086 VL - 115 IS - 6 SP - 968 EP - 980 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Shou, Keyun A1 - Bremer, Anne A1 - Rindfleisch, Tobias A1 - Knox-Brown, Patrick A1 - Hirai, Mitsuhiro A1 - Rekas, Agata A1 - Garvey, Christopher J. A1 - Hincha, Dirk K. A1 - Stadler, Andreas M. A1 - Thalhammer, Anja T1 - Conformational selection of the intrinsically disordered plant stress protein COR15A in response to solution osmolarity - an X-ray and light scattering study JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The plant stress protein COR15A stabilizes chloroplast membranes during freezing. COR15A is an intrinsically disordered protein (IDP) in aqueous solution, but acquires an alpha-helical structure during dehydration or the increase of solution osmolarity. We have used small- and wide-angle X-ray scattering (SAXS/WAXS) combined with static and dynamic light scattering (SLS/DLS) to investigate the structural and hydrodynamic properties of COR15A in response to increasing solution osmolarity. Coarse-grained ensemble modelling allowed a structure-based interpretation of the SAXS data. Our results demonstrate that COR15A behaves as a biomacromolecule with polymer-like properties which strongly depend on solution osmolarity. Biomacromolecular self-assembly occurring at high solvent osmolarity is initiated by the occurrence of two specific structural subpopulations of the COR15A monomer. The osmolarity dependent structural selection mechanism is an elegant way for conformational regulation and assembly of COR15A. It highlights the importance of the polymer-like properties of IDPs for their associated biological function. Y1 - 2019 U6 - https://doi.org/10.1039/c9cp01768b SN - 1463-9076 SN - 1463-9084 VL - 21 IS - 34 SP - 18727 EP - 18740 PB - Royal Society of Chemistry CY - Cambridge ER -