TY - JOUR A1 - Steirou, Eva A1 - Gerlitz, Lars A1 - Apel, Heiko A1 - Sun, Xun A1 - Merz, Bruno T1 - Climate influences on flood probabilities across Europe JF - Hydrology and earth system sciences : HESS N2 - The link between streamflow extremes and climatology has been widely studied in recent decades. However, a study investigating the effect of large-scale circulation variations on the distribution of seasonal discharge extremes at the European level is missing. Here we fit a climate-informed generalized extreme value (GEV) distribution to about 600 streamflow records in Europe for each of the standard seasons, i.e., to winter, spring, summer and autumn maxima, and compare it with the classical GEV distribution with parameters invariant in time. The study adopts a Bayesian framework and covers the period 1950 to 2016. Five indices with proven influence on the European climate are examined independently as covariates, namely the North Atlantic Oscillation (NAO), the east Atlantic pattern (EA), the east Atlantic-western Russian pattern (EA/WR), the Scandinavia pattern (SCA) and the polar-Eurasian pattern (POL). It is found that for a high percentage of stations the climate-informed model is preferred to the classical model. Particularly for NAO during winter, a strong influence on streamflow extremes is detected for large parts of Europe (preferred to the classical GEV distribution for 46% of the stations). Climate-informed fits are characterized by spatial coherence and form patterns that resemble relations between the climate indices and seasonal precipitation, suggesting a prominent role of the considered circulation modes for flood generation. For certain regions, such as northwestern Scandinavia and the British Isles, yearly variations of the mean seasonal climate indices result in considerably different extreme value distributions and thus in highly different flood estimates for individual years that can also persist for longer time periods. Y1 - 2019 U6 - https://doi.org/10.5194/hess-23-1305-2019 SN - 1027-5606 SN - 1607-7938 VL - 23 IS - 3 SP - 1305 EP - 1322 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Gerlitz, Lars A1 - Steirou, Eva A1 - Schneider, Christoph A1 - Moron, Vincent A1 - Vorogushyn, Sergiy A1 - Merz, Bruno T1 - Variability of the Cold Season Climate in Central Asia. Part II: Hydroclimatic Predictability JF - Journal of climate N2 - Central Asia (CA) is subjected to a large variability of precipitation. This study presents a statistical model, relating precipitation anomalies in three subregions of CA in the cold season (November-March) with various predictors in the preceding October. Promising forecast skill is achieved for two subregions covering 1) Uzbekistan, Turkmenistan, Kyrgyzstan, Tajikistan, and southern Kazakhstan and 2) Iran, Afghanistan, and Pakistan. ENSO in October is identified as the major predictor. Eurasian snow cover and the quasi-biennial oscillation further improve the forecast performance. To understand the physical mechanisms, an analysis of teleconnections between these predictors and the wintertime circulation over CA is conducted. The correlation analysis of predictors and large-scale circulation indices suggests a seasonal persistence of tropical circulation modes and a dynamical forcing of the westerly circulation by snow cover variations over Eurasia. An EOF analysis of pressure and humidity patterns allows separating the circulation variability over CA into westerly and tropical modes and confirms that the identified predictors affect the respective circulation characteristics. Based on the previously established weather type classification for CA, the predictors are investigated with regard to their effect on the regional circulation. The results suggest a modification of the Hadley cell due to ENSO variations, with enhanced moisture supply from the Arabian Gulf during El Nino. They further indicate an influence of Eurasian snow cover on the wintertime Arctic Oscillation (AO) and Northern Hemispheric Rossby wave tracks. Positive anomalies favor weather types associated with dry conditions, while negative anomalies promote the formation of a quasi-stationary trough over CA, which typically occurs during positive AO conditions. KW - Asia KW - Climate prediction KW - Seasonal forecasting KW - North Atlantic Oscillation KW - Southern Oscillation Y1 - 2019 U6 - https://doi.org/10.1175/JCLI-D-18-0892.1 SN - 0894-8755 SN - 1520-0442 VL - 32 IS - 18 SP - 6015 EP - 6033 PB - American Meteorological Soc. CY - Boston ER -