TY - JOUR A1 - Huschek, Gerd A1 - Bönick, Josephine A1 - Merkel, Dietrich A1 - Huschek, Doreen A1 - Rawel, Harshadrai Manilal T1 - Authentication of leguminous-based products by targeted biomarkers using high resolution time of flight mass spectrometry JF - LWT - food science and technology : an official journal of the Swiss Society of Food Science and Technology (SGLWT/SOSSTA) and the International Union of Food Science and Technology (IUFoST) N2 - A growing number of health-conscious individuals supplements their diet with protein-rich plant-based products to reduce their meat consumption. Analytical methods are needed to authenticate these new vegetarian products not only for the correct labelling of ingredients according to European legislation but also to discourage food fraud. This paper presents new biomarkers for a targeted proteomics LC-MS/MS work-flow that can simultaneously prove the presence/absence of garden pea, a protein-rich legume, meat and honey and quantify their content in processed vegan food. We show a novel rapid strategy to identify biomarkers for species authentication and the steps for the multi-parameter LC-MS/MS method validation and quantification. A high resolution triple time of flight mass spectrometer (HRMS) with SWATH Acquisition was used for the rapid discovery of all measurable trypsin-digested proteins in the individual ingredients. From these proteins, species-selective biomarkers were identified with BLAST and Skyline. Vicilin and convicilin (UniProt: D3VND9, Q9M3X6) allow pea authentication with regard to other legume species. Myostatin (UniProt: 018831) is a single biomarker for all meat types. For honey, we identified three selective proteins (UniProt: C6K481, C6K482, Q3L6329). The final LC-MS/MS method can identity and quantify these markers simultaneously. Quantification occurs via external matrix calibration. KW - Vegan KW - Food authentication KW - Legume KW - Honey KW - Meat peptide biomarker KW - MS quantification of leguminous additives KW - Food labelling Y1 - 2018 U6 - https://doi.org/10.1016/j.lwt.2017.12.034 SN - 0023-6438 SN - 1096-1127 VL - 90 SP - 164 EP - 171 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Müller, Sandra Marie A1 - Ebert, Franziska A1 - Bornhorst, Julia A1 - Galla, Hans-Joachim A1 - Francesconi, Kevin A. A1 - Schwerdtle, Tanja T1 - Arsenic-containing hydrocarbons disrupt a model in vitro blood-cerebrospinal fluid barrier JF - Journal of trace elements in medicine and biology N2 - Lipid-soluble arsenicals, so-called arsenolipids, have gained a lot of attention in the last few years because of their presence in many seafoods and reports showing substantial cytotoxicity emanating from arsenic-containing hydrocarbons (AsHCs), a prominent subgroup of the arsenolipids. More recent in vivo and in vitro studies indicate that some arsenolipids might have adverse effects on brain health. In the present study, we focused on the effects of selected arsenolipids and three representative metabolites on the blood-cerebrospinal fluid barrier (B-CSF-B), a brain-regulating interface. For this purpose, we incubated an in vitro model of the B-CSF-B composed of porcine choroid plexus epithelial cells (PCPECs) with three AsHCs, two arsenic-containing fatty acids (AsFAs) and three representative arsenolipid metabolites (dimethylarsinic acid, thio/oxo-dimethylpropanoic acid) to examine their cytotoxic potential and impact on barrier integrity. The toxic arsenic species arsenite was also tested in this way and served as a reference substance. While AsFAs and the metabolites showed no cytotoxic effects in the conducted assays, AsHCs showed a strong cytotoxicity, being up to 1.5-fold more cytotoxic than arsenite. Analysis of the in vitro B-CSF-B integrity showed a concentration dependent disruption of the barrier within 72 h. The correlation with the decreased plasma membrane surface area (measured as capacitance) indicates cytotoxic effects. These findings suggest exposure to elevated levels of certain arsenolipids may have detrimental consequences for the central nervous system. KW - Arsenolipids KW - Blood-liquor barrier KW - Blood-cerebrospinal fluid barrier KW - Arsenic-containing hydrocarbons KW - Arsenic-containing fatty acids Y1 - 2018 U6 - https://doi.org/10.1016/j.jtemb.2018.01.020 SN - 0946-672X VL - 49 SP - 171 EP - 177 PB - Elsevier GMBH CY - München ER - TY - JOUR A1 - Meyer, Sören A1 - Markova, Mariya A1 - Pohl, Gabriele A1 - Marschall, Talke Anu A1 - Pivovarova, Olga A1 - Pfeiffer, Andreas F. H. A1 - Schwerdtle, Tanja T1 - Development, validation and application of an ICP-MS/MS method to quantify minerals and (ultra-)trace elements in human serum JF - Journal of trace elements in medicine and biology N2 - Multi-element determination in human samples is very challenging. Especially in human intervention studies sample volumes are often limited to a few microliters and due to the high number of samples a high-throughput is indispensable. Here, we present a state-of-the-art ICP-MS/MS-based method for the analysis of essential (trace) elements, namely Mg, Ca, Fe, Cu, Zn, Mo, Se and I, as well as food-relevant toxic elements such as As and Cd. The developed method was validated regarding linearity of the calibration curves, method LODs and LOQs, selectivity and trueness as well as precision. The established reliable method was applied to quantify the element serum concentrations of participants of a human intervention study (LeguAN). The participants received isocaloric diets, either rich in plant protein or in animal protein. While the serum concentrations of Mg and Mo increased in participants receiving the plant protein-based diet (above all legumes), the Se concentration in serum decreased. In contrast, the animal protein-based diet, rich in meat and dairy products, resulted in an increased Se concentration in serum. KW - ICP-MS KW - Elemental blood serum concentration KW - Human nutritional intervention Y1 - 2018 U6 - https://doi.org/10.1016/j.jtemb.2018.05.012 SN - 0946-672X VL - 49 SP - 157 EP - 163 PB - Elsevier GMBH CY - München ER - TY - GEN A1 - Chen, Pan A1 - Bornhorst, Julia A1 - Neely, M. Diana A1 - Avila, Daiana Silva T1 - Mechanisms and Disease Pathogenesis Underlying Metal-Induced Oxidative Stress T2 - Oxidative Medicine and Cellular Longevity Y1 - 2018 U6 - https://doi.org/10.1155/2018/7612172 SN - 1942-0900 SN - 1942-0994 PB - Hindawi CY - London ER - TY - GEN A1 - Steinberg, Pablo T1 - Only one Component of a holistic Nutrition Policy T1 - Nur ein Baustein einer ganzheitlichen Ernährungspolitik T2 - Fleischwirtschaft Y1 - 2018 SN - 0015-363X VL - 98 IS - 11 SP - 8 EP - 9 PB - Deutscher Fachverlag GmbH CY - Frankfurt am Main ER - TY - JOUR A1 - Giulbudagian, Michael A1 - Hönzke, Stefan A1 - Bergueiro, Julián A1 - Işık, Doğuş A1 - Schumacher, Fabian A1 - Saeidpour, Siavash A1 - Lohan, Silke A1 - Meinke, Martina A1 - Teutloff, Christian A1 - Schäfer-Korting, Monika A1 - Yealland, Guy A1 - Kleuser, Burkhard A1 - Hedtrich, Sarah A1 - Calderón, Marcelo T1 - Enhanced topical delivery of dexamethasone by beta-cyclodextrin decorated thermoresponsive nanogels JF - Nanoscale N2 - Highly hydrophilic, responsive nanogels are attractive as potential systems for the topical delivery of bioactives encapsulated in their three-dimensional polymeric scaffold. Yet, these drug carrier systems suffer from drawbacks for efficient delivery of hydrophobic drugs. Addressing this, β-cyclodextrin (βCD) could be successfully introduced into the drug carrier systems by exploiting its unique affinity toward dexamethasone (DXM) as well as its role as topical penetration enhancer. The properties of βCD could be combined with those of thermoresponsive nanogels (tNGs) based on dendritic polyglycerol (dPG) as a crosslinker and linear thermoresponsive polyglycerol (tPG) inducing responsiveness to temperature changes. Electron paramagnetic resonance (EPR) studies localized the drug within the hydrophobic cavity of βCD by differences in its mobility and environmental polarity. In fact, the fabricated carriers combining a particulate delivery system with a conventional penetration enhancer, resulted in an efficient delivery of DXM to the epidermis and the dermis of human skin ex vivo (enhancement compared to commercial DXM cream: ∼2.5 fold in epidermis, ∼30 fold in dermis). Furthermore, DXM encapsulated in βCD tNGs applied to skin equivalents downregulated the expression of proinflammatory thymic stromal lymphopoietin (TSLP) and outperformed a commercially available DXM cream. Y1 - 2017 U6 - https://doi.org/10.1039/c7nr04480a SN - 2040-3364 SN - 2040-3372 VL - 10 IS - 1 SP - 469 EP - 479 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Hocher, Berthold A1 - Zeng, Shufei T1 - Need for better PTH assays for clinical research and patient treatment T2 - Clinical chemistry and laboratory medicine : journal of the Forum of the European Societies of Clinical Chemistry - the European Branch of the International Federation of Clinical Chemistry and Laboratory Medicine Y1 - 2017 U6 - https://doi.org/10.1515/cclm-2017-0617 SN - 1434-6621 SN - 1437-4331 VL - 56 IS - 2 SP - 183 EP - 185 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Müller, Sandra Marie A1 - Ebert, Franziska A1 - Raber, Georg A1 - Meyer, Sören A1 - Bornhorst, Julia A1 - Hüwel, Stephan A1 - Galla, Hans-Joachim A1 - Francesconi, Kevin A. A1 - Schwerdtle, Tanja T1 - Effects of arsenolipids on in vitro blood-brain barrier model JF - Archives of toxicology : official journal of EUROTOX N2 - Arsenic-containing hydrocarbons (AsHCs), a subgroup of arsenolipids (AsLs) occurring in fish and edible algae, possess a substantial neurotoxic potential in fully differentiated human brain cells. Previous in vivo studies indicating that AsHCs cross the blood–brain barrier of the fruit fly Drosophila melanogaster raised the question whether AsLs could also cross the vertebrate blood–brain barrier (BBB). In the present study, we investigated the impact of several representatives of AsLs (AsHC 332, AsHC 360, AsHC 444, and two arsenic-containing fatty acids, AsFA 362 and AsFA 388) as well as of their metabolites (thio/oxo-dimethylpropionic acid, dimethylarsinic acid) on porcine brain capillary endothelial cells (PBCECs, in vitro model for the blood–brain barrier). AsHCs exerted the strongest cytotoxic effects of all investigated arsenicals as they were up to fivefold more potent than the toxic reference species arsenite (iAsIII). In our in vitro BBB-model, we observed a slight transfer of AsHC 332 across the BBB after 6 h at concentrations that do not affect the barrier integrity. Furthermore, incubation with AsHCs for 72 h led to a disruption of the barrier at sub-cytotoxic concentrations. The subsequent immunocytochemical staining of three tight junction proteins revealed a significant impact on the cell membrane. Because AsHCs enhance the permeability of the in vitro blood–brain barrier, a similar behavior in an in vivo system cannot be excluded. Consequently, AsHCs might facilitate the transfer of accompanying foodborne toxicants into the brain. KW - Arsenolipids KW - Arsenic-containing hydrocarbons KW - Arsenic-containing fatty acids KW - In vitro blood-brain barrier model Y1 - 2017 SN - 0340-5761 SN - 1432-0738 VL - 92 IS - 2 SP - 823 EP - 832 PB - Springer CY - Heidelberg ER - TY - GEN A1 - Honnen, S. A1 - Wellenberg, Anna A1 - Weides, L. A1 - Bornhorst, Julia A1 - Crone, B. A1 - Karst, U. A1 - Fritz, G. T1 - Identification of potent drug candidates for the prevention of cisplatin-induced neurotoxicity in the model organism C. elegans T2 - Naunyn-Schmiedeberg's archives of pharmacology Y1 - 2018 UR - https://link.springer.com/content/pdf/10.1007/s00210-018-1477-5.pdf U6 - https://doi.org/10.1007/s00210-018-1477-5 SN - 0028-1298 SN - 1432-1912 VL - 391 SP - S4 EP - S4 PB - Springer CY - New York ER - TY - JOUR A1 - Krstic, Jelena A1 - Galhuber, Markus A1 - Schulz, Tim Julius A1 - Schupp, Michael A1 - Prokesch, Andreas T1 - p53 as a dichotomous regulator of liver disease BT - the dose makes the medicine JF - International journal of molecular sciences N2 - Lifestyle-related disorders, such as the metabolic syndrome, have become a primary risk factor for the development of liver pathologies that can progress from hepatic steatosis, hepatic insulin resistance, steatohepatitis, fibrosis and cirrhosis, to the most severe condition of hepatocellular carcinoma (HCC). While the prevalence of liver pathologies is steadily increasing in modern societies, there are currently no approved drugs other than chemotherapeutic intervention in late stage HCC. Hence, there is a pressing need to identify and investigate causative molecular pathways that can yield new therapeutic avenues. The transcription factor p53 is well established as a tumor suppressor and has recently been described as a central metabolic player both in physiological and pathological settings. Given that liver is a dynamic tissue with direct exposition to ingested nutrients, hepatic p53, by integrating cellular stress response, metabolism and cell cycle regulation, has emerged as an important regulator of liver homeostasis and dysfunction. The underlying evidence is reviewed herein, with a focus on clinical data and animal studies that highlight a direct influence of p53 activity on different stages of liver diseases. Based on current literature showing that activation of p53 signaling can either attenuate or fuel liver disease, we herein discuss the hypothesis that, while hyper-activation or loss of function can cause disease, moderate induction of hepatic p53 within physiological margins could be beneficial in the prevention and treatment of liver pathologies. Hence, stimuli that lead to a moderate and temporary p53 activation could present new therapeutic approaches through several entry points in the cascade from hepatic steatosis to HCC. KW - p53 KW - liver disease KW - insulin resistance KW - non-alcoholic fatty liver disease KW - non-alcoholic steatohepatitis KW - hepatocellular carcinoma KW - liver regeneration KW - mouse models Y1 - 2018 U6 - https://doi.org/10.3390/ijms19030921 SN - 1422-0067 VL - 19 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kleuser, Burkhard T1 - Divergent role of sphingosine 1-phosphate in liver health and disease JF - International journal of molecular sciences N2 - Two decades ago, sphingosine 1-phosphate (S1P) was discovered as a novel bioactive molecule that regulates a variety of cellular functions. The plethora of S1P-mediated effects is due to the fact that the sphingolipid not only modulates intracellular functions but also acts as a ligand of G protein-coupled receptors after secretion into the extracellular environment. In the plasma, S1P is found in high concentrations, modulating immune cell trafficking and vascular endothelial integrity. The liver is engaged in modulating the plasma S1P content, as it produces apolipoprotein M, which is a chaperone for the S1P transport. Moreover, the liver plays a substantial role in glucose and lipid homeostasis. A dysfunction of glucose and lipid metabolism is connected with the development of liver diseases such as hepatic insulin resistance, non-alcoholic fatty liver disease, or liver fibrosis. Recent studies indicate that S1P is involved in liver pathophysiology and contributes to the development of liver diseases. In this review, the current state of knowledge about S1P and its signaling in the liver is summarized with a specific focus on the dysregulation of S1P signaling in obesity-mediated liver diseases. Thus, the modulation of S1P signaling can be considered as a potential therapeutic target for the treatment of hepatic diseases. KW - sphingolipids KW - sphingosine kinase KW - fibrosis KW - non-alcoholic fatty liver disease KW - insulin resistance KW - liver fibrosis Y1 - 2018 U6 - https://doi.org/10.3390/ijms19030722 SN - 1422-0067 VL - 19 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Prommer, Hans-Ulrich A1 - Maurer, Johannes A1 - von Websky, Karoline A1 - Freise, Christian A1 - Sommer, Kerstin A1 - Nasser, Hamoud A1 - Samapati, Rudi A1 - Reglin, Bettina A1 - Guimaraes, Pedro A1 - Pries, Axel Radlach A1 - Querfeld, Uwe T1 - Chronic kidney disease induces a systemic microangiopathy, tissue hypoxia and dysfunctional angiogenesis JF - Scientific reports N2 - Chronic kidney disease (CKD) is associated with excessive mortality from cardiovascular disease (CVD). Endothelial dysfunction, an early manifestation of CVD, is consistently observed in CKD patients and might be linked to structural defects of the microcirculation including microvascular rarefaction. However, patterns of microvascular rarefaction in CKD and their relation to functional deficits in perfusion and oxygen delivery are currently unknown. In this in-vivo microscopy study of the cremaster muscle microcirculation in BALB/c mice with moderate to severe uremia, we show in two experimental models (adenine feeding or subtotal nephrectomy), that serum urea levels associate incrementally with a distinct microangiopathy. Structural changes were characterized by a heterogeneous pattern of focal microvascular rarefaction with loss of coherent microvascular networks resulting in large avascular areas. Corresponding microvascular dysfunction was evident by significantly diminished blood flow velocity, vascular tone, and oxygen uptake. Microvascular rarefaction in the cremaster muscle paralleled rarefaction in the myocardium, which was accompanied by a decrease in transcription levels not only of the transcriptional regulator HIF-1 alpha, but also of its target genes Angpt-2, TIE-1 and TIE-2, Flkt-1 and MMP-9, indicating an impaired hypoxia-driven angiogenesis. Thus, experimental uremia in mice associates with systemic microvascular disease with rarefaction, tissue hypoxia and dysfunctional angiogenesis. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-23663-1 SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Edlich, Alexander A1 - Volz, Pierre A1 - Brodwolf, Robert A1 - Unbehauen, Michael A1 - Mundhenk, Lars A1 - Gruber, Achim D. A1 - Hedtrich, Sarah A1 - Haag, Rainer A1 - Alexiev, Ulrike A1 - Kleuser, Burkhard T1 - Crosstalk between core-multishell nanocarriers for cutaneous drug delivery and antigen-presenting cells of the skin JF - Biomaterials : biomaterials reviews online N2 - Owing their unique chemical and physical properties core-multishell (CMS) nanocarriers are thought to underlie their exploitable biomedical use for a topical treatment of skin diseases. This highlights the need to consider not only the efficacy of CMS nanocarriers but also the potentially unpredictable and adverse consequences of their exposure thereto. As CMS nanocarriers are able to penetrate into viable layers of normal and stripped human skin ex vivo as well as in in vitro skin disease models the understanding of nanoparticle crosstalk with components of the immune system requires thorough investigation. Our studies highlight the biocompatible properties of CMS nanocarriers on Langerhans cells of the skin as they did neither induce cytotoxicity and genotoxicity nor cause reactive oxygen species (ROS) or an immunological response. Nevertheless, CMS nanocarriers were efficiently taken up by Langerhans cells via divergent endocytic pathways. Bioimaging of CMS nanocarriers by fluorescence lifetime imaging microscopy (FLIM) and flow cytometry indicated not only a localization within the lysosomes but also an energy-dependent exocytosis of unmodified CMS nanocarriers into the extracellular environment. (C) 2018 Elsevier Ltd. All rights reserved. KW - Core-multishell nanocarriers KW - Fluorescence lifetime imaging microscopy KW - Langerhans cells KW - Nanoparticle uptake KW - Nanotoxicology Y1 - 2018 U6 - https://doi.org/10.1016/j.biomaterials.2018.01.058 SN - 0142-9612 SN - 1878-5905 VL - 162 SP - 60 EP - 70 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Hocher, Berthold A1 - Zeng, Shufei T1 - Clear the fog around parathyroid hormone assays BT - what do iPTH assays really measure? T2 - Clinical journal of the American Society of Nephrology KW - Assays KW - Biological Assay KW - CKD KW - oxidative stress KW - PTH Y1 - 2018 U6 - https://doi.org/10.2215/CJN.01730218 SN - 1555-9041 SN - 1555-905X VL - 13 IS - 4 SP - 524 EP - 526 PB - American Society of Nephrology CY - Washington ER - TY - JOUR A1 - Chaykovska, Lyubov A1 - Heunisch, Fabian A1 - von Einem, Gina A1 - Hocher, Carl-Friedrich A1 - Tsuprykov, Oleg A1 - Pavkovic, Mira A1 - Sandner, Peter A1 - Kretschmer, Axel A1 - Chu, Chang A1 - Elitok, Saban A1 - Stasch, Johannes-Peter A1 - Hocher, Berthold T1 - Urinary cGMP predicts major adverse renal events in patients with mild renal impairment and/or diabetes mellitus before exposure to contrast medium JF - PLoS one N2 - Background The use of iodine-based contrast agents entails the risk of contrast induced nephropathy (CIN). Radiocontrast agents elicit the third most common cause of nephropathy among hospitalized patients, accounting for 11-12% of cases. CIN is connected with clinically significant consequences, including increased morbidity, prolonged hospitalization, increased risk of complications, potential need for dialysis, and increased mortality rate. The number of in hospital examinations using iodine-based contrast media has been significantly increasing over the last decade. In order to protect patients from possible complications of such examinations, new biomarkers are needed that are able to predict a risk of contrast-induced nephropathy. Urinary and plasma cyclic guanosine monophosphate (cGMP) concentrations are influenced by renal function. Urinary cGMP is primarily of renal cellular origin. Therefore, we assessed if urinary cGMP concentration may predict major adverse renal events (MARE) after contrast media exposure during coronary angiography. Methods Urine samples were prospectively collected from non-randomized consecutive patients with either diabetes or preexisting impaired kidney function receiving intra-arterial contrast medium (CM) for emergent or elective coronary angiography at the Charite Campus Mitte, University Hospital Berlin. Urinary cGMP concentration in spot urine was analyzed 24 hours after CM exposure. Patients were followed up over 90 days for occurrence of death, initiation of dialysis, doubling of plasma creatinine concentration or MARE. Results In total, 289 consecutive patients were included into the study. Urine cGMP/creatinine ratio 24 hours before CM exposure expressed as mean +/- SD was predictive for the need of dialysis (no dialysis: 89.77 +/- 92.85 mu M/mM, n = 277; need for dialysis: 140.3 +/- 82.90 mu M/mM, n = 12, p = 0.008), death (no death during follow-up: 90.60 +/- 92.50 mu M/mM, n = 280; death during follow-up: 169.88 +/- 81.52 mu M/mM, n = 9; p = 0.002), and the composite endpoint MARE (no MARE: 86.02 +/- 93.17 mu M/mM, n = 271; MARE: 146.64 +/- 74.68 mu M/mM, n = 18, p<0.001) during the follow-up of 90 days after contrast media application. cGMP/creatinine ratio stayed significantly increased at values exceeding 120 pM/mM in patients who developed MARE, required dialysis or died. Conclusions Urinary cGMP/creatinine ratio >= 120 mu M/mM before CM exposure is a promising biomarker for the need of dialysis and all-cause mortality 90 days after CM exposure in patients with preexisting renal impairment or diabetes. Y1 - 2018 U6 - https://doi.org/10.1371/journal.pone.0195828 SN - 1932-6203 VL - 13 IS - 4 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Castro, Jose Pedro A1 - Wardelmann, Kristina A1 - Grune, Tilman A1 - Kleinridders, Andre T1 - Mitochondrial Chaperones in the Brain BT - safeguarding Brain Health and Metabolism? JF - Frontiers in Endocrinology N2 - The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA) mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis), cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function) has been observed during aging, metabolic diseases such as type 2 diabetes and in neurode-generative diseases such as Alzheimer's (AD), Parkinson's (PD) or even Huntington's (HD) diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases. KW - insulin signaling KW - brain KW - chaperones KW - mitochondria homeostasis KW - mitochondrial dysfunction KW - neurodegeneration Y1 - 2018 U6 - https://doi.org/10.3389/fendo.2018.00196 SN - 1664-2392 VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Karuwanarint, Piyaporn A1 - Phonrat, Benjaluck A1 - Tungtrongchitr, Anchalee A1 - Suriyaprom, Kanjana A1 - Chuengsamarn, Somlak A1 - Schweigert, Florian J. A1 - Tungtrongchitr, Rungsunn T1 - Vitamin D-binding protein and its polymorphisms as a predictor for metabolic syndrome JF - Biomarkers in medicine N2 - Aim: To investigate the relationship of vitamin D-binding protein (GC) and genetic variation of GC (rs4588, rs7041 and rs2282679) with metabolic syndrome (MetS) in the Thai population. Materials & methods: GCglobulin concentrations were measured by quantitative western blot analysis in 401 adults. All participants were genotyped using TaqMan allelic discrimination assays. Results: GC-globulin levels were significatly lower in MetS subjects than in control subjects, in which significant negative correlations of GC-globulin levels with systolic blood pressure, glucose and age were found. Male participants who carried the GT genotype for rs4588 showed an increased risk of MetS compared with the GG wild-type (odds ratio: 3.25; p = 0.004). Conclusion: GC-globulin concentrations and variation in GC rs4588 were supported as a risk factor for MetS in Thais. KW - GC gene KW - GC-globulin KW - metabolic syndrome KW - polymorphism KW - Thai population KW - vitamin D-binding protein Y1 - 2018 U6 - https://doi.org/10.2217/bmm-2018-0029 SN - 1752-0363 SN - 1752-0371 VL - 12 IS - 5 SP - 465 EP - 473 PB - Future Medicine CY - London ER - TY - JOUR A1 - Knebel, Constanze A1 - Neeb, Jannika A1 - Zahn, Elisabeth A1 - Schmidt, Flavia A1 - Carazo, Alejandro A1 - Holas, Ondej A1 - Pavek, Petr A1 - Püschel, Gerhard Paul A1 - Zanger, Ulrich M. A1 - Süssmuth, Roderich A1 - Lampen, Alfonso A1 - Marx-Stoelting, Philip A1 - Braeuning, Albert T1 - Unexpected Effects of Propiconazole, Tebuconazole, and Their Mixture on the Receptors CAR and PXR in Human Liver Cells JF - Toxicological sciences N2 - Analyzing mixture toxicity requires an in-depth understanding of the mechanisms of action of its individual components. Substances with the same target organ, same toxic effect and same mode of action (MoA) are believed to cause additive effects, whereas substances with different MoAs are assumed to act independently. Here, we tested 2 triazole fungicides, propiconazole, and tebuconazole (Te), for individual and combined effects on liver toxicity-related endpoints. Both triazoles are proposed to belong to the same cumulative assessment group and are therefore thought to display similar and additive behavior. Our data show that Te is an antagonist of the constitutive androstane receptor (CAR) in rats and humans, while propiconazole is an agonist of this receptor. Both substances activate the pregnane X-receptor (PXR) and further induce mRNA expression of CYP3A4. CYP3A4 enzyme activity, however, is inhibited by propiconazole. For common targets of PXR and CAR, the activation of PXR by Te overrides CAR inhibition. In summary, propiconazole and Te affect different hepatotoxicity-relevant cellular targets and, depending on the individual endpoint analyzed, act via similar or dissimilar mechanisms. The use of molecular data based on research in human cell systems extends the picture to refine cumulative assessment group grouping and substantially contributes to the understanding of mixture effects of chemicals in biological systems. KW - triazole fungicides KW - constitutive androstane receptor KW - pregnane X-receptor KW - enzyme induction KW - liver toxicity KW - mixtures Y1 - 2018 U6 - https://doi.org/10.1093/toxsci/kfy026 SN - 1096-6080 SN - 1096-0929 VL - 163 IS - 1 SP - 170 EP - 181 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Nowotny, Kerstin A1 - Castro, Jose Pedro A1 - Hugo, Martin A1 - Braune, Sabine A1 - Weber, Daniela A1 - Pignitter, Marc A1 - Somoza, Veronika A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Grune, Tilman T1 - Oxidants produced by methylglyoxal-modified collagen trigger ER stress and apoptosis in skin fibroblasts JF - Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research N2 - Methylglyoxal (MG), a highly reactive dicarbonyl, interacts with proteins to form advanced glycation end products (AGEs). AGEs include a variety of compounds which were shown to have damaging potential and to accumulate in the course of different conditions such as diabetes mellitus and aging. After confirming collagen as a main target for MG modifications in vivo within the extracellular matrix, we show here that MG-collagen disrupts fibroblast redox homeostasis and induces endoplasmic reticulum (ER) stress and apoptosis. In particular, MG-collagen-induced apoptosis is associated with the activation of the PERK-eIF2 alpha pathway and caspase-12. MG-collagen contributes to altered redox homeostasis by directly generating hydrogen peroxide and oxygen-derived free radicals. The induction of ER stress in human fibroblasts was confirmed using collagen extracts isolated from old mice in which MG-derived AGEs were enriched. In conclusion, MG-derived AGEs represent one factor contributing to diminished fibroblast function during aging. KW - Advanced glycation end products KW - Aging KW - Apoptosis KW - Collagen KW - ER stress KW - Methylglyoxal KW - Redox homeostasis Y1 - 2018 U6 - https://doi.org/10.1016/j.freeradbiomed.2018.03.022 SN - 0891-5849 SN - 1873-4596 VL - 120 SP - 102 EP - 113 PB - Elsevier CY - New York ER - TY - GEN A1 - Fernando, Raquel A1 - Drescher, Cathleen A1 - Deubel, Stefanie A1 - Grune, Tilman A1 - Castro, Jose Pedro T1 - Distinct proteasomal activity for fast and slow twitch skeletal muscle during aging T2 - Free radical biology and medicine : the official journal of the Oxygen Society, a constituent member of the International Society for Free Radical Research N2 - Skeletal muscle alterations during aging lead to dysfunctional metabolism, correlating with frailty and early mortality. The loss of proteostasis is a hallmark of aging. Whether proteostasis loss plays a role in muscle aging remains elusive. To address this question we collected muscles, Soleus (SOL, type I) and Extensor digitorum longus (EDL, type II), from young (4 months) and old (25 months) C57BL/6 mice and evaluated the proteasomal system. Initial work showed decreased 26 S activity in old SOL. EDL displayed lower proteasomal activity in both ages compared to any of the SOL ages. Moreover, in order to understand if during aging there is the so-called “fiber switch from fast-to-slow”, we performed western blots against sMHC and fMHC (slow and fast myosin heavy chain, respectively). Preliminary results suggest that young SOL is composed by slow twitch fibers but also contains fast twitch fibers, while young EDL seems to be mostly composed by fast twitch fibers that level down during aging, suggesting the switch. As a conclusion, EDL seems to have less proteasomal activity, however, if this is a contributor or a consequence to the muscle fiber switch during aging still needs further investigation. Y1 - 2018 U6 - https://doi.org/10.1016/j.freeradbiomed.2018.04.393 SN - 0891-5849 SN - 1873-4596 VL - 120 SP - S119 EP - S119 PB - Elsevier CY - New York ER - TY - JOUR A1 - Rohn, Isabelle A1 - Marschall, Talke Anu A1 - Kröpfl, Nina A1 - Jensen, Kenneth Bendix A1 - Aschner, Michael A1 - Tuck, Simon A1 - Kuehnelt, Doris A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Selenium species-dependent toxicity, bioavailability and metabolic transformations in Caenorhabditis elegans JF - Metallomics : integrated biometal science N2 - The essential micronutrient selenium (Se) is required for various systemic functions, but its beneficial range is narrow and overexposure may result in adverse health effects. Additionally, the chemical form of the ingested selenium contributes crucially to its health effects. While small Se species play a major role in Se metabolism, their toxicological effects, bioavailability and metabolic transformations following elevated uptake are poorly understood. Utilizing the tractable invertebrate Caenorhabditis elegans allowed for an alternative approach to study species-specific characteristics of organic and inorganic Se forms in vivo, revealing remarkable species-dependent differences in the toxicity and bioavailability of selenite, selenomethionine (SeMet) and Se-methylselenocysteine (MeSeCys). An inverse relationship was found between toxicity and bioavailability of the Se species, with the organic species displaying a higher bioavailability than the inorganic form, yet being less toxic. Quantitative Se speciation analysis with HPLC/mass spectrometry revealed a partial metabolism of SeMet and MeSeCys. In SeMet exposed worms, identified metabolites were Se-adenosylselenomethionine (AdoSeMet) and Se-adenosylselenohomocysteine (AdoSeHcy), while worms exposed to MeSeCys produced Se-methylselenoglutathione (MeSeGSH) and -glutamyl-MeSeCys (-Glu-MeSeCys). Moreover, the possible role of the sole selenoprotein in the nematode, thioredoxin reductase-1 (TrxR-1), was studied comparing wildtype and trxr-1 deletion mutants. Although a lower basal Se level was detected in trxr-1 mutants, Se toxicity and bioavailability following acute exposure was indistinguishable from wildtype worms. Altogether, the current study demonstrates the suitability of C. elegans as a model for Se species dependent toxicity and metabolism, while further research is needed to elucidate TrxR-1 function in the nematode. Y1 - 2018 U6 - https://doi.org/10.1039/c8mt00066b SN - 1756-5901 SN - 1756-591X VL - 10 IS - 6 SP - 818 EP - 827 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - von Websky, Karoline A1 - Hasan, Ahmed Abdallah Abdalrahman Mohamed A1 - Reichetzeder, Christoph A1 - Tsuprykov, Oleg A1 - Hocher, Berthold T1 - Impact of vitamin D on pregnancy-related disorders and on offspring outcome JF - The Journal of Steroid Biochemistry and Molecular Biology N2 - Observational studies from all over the world continue to find high prevalence rates of vitamin D insufficiency and deficiency in many populations, including pregnant women. Beyond its classical function as a regulator of calcium and phosphate metabolism, vitamin D elicits numerous effects in the human body. Current evidence highlights a vital role of vitamin D in mammalian gestation. During pregnancy, adaptations in maternal vitamin D metabolism lead to a physiologic increase of vitamin D levels, mainly because of an increased renal production, although other potential sources like the placenta are being discussed. A sufficient supply of mother and child with calcium and vitamin D during pregnancy ensures a healthy bone development of the fetus, whereas lack of either of these nutrients can lead to the development of rickets in the child. Moreover, vitamin D insufficiency during pregnancy has consistently been associated with adverse maternal and neonatal pregnancy outcomes. In multitudinous studies, low maternal vitamin D status was associated with a higher risk for pre-eclampsia, gestational diabetes mellitus and other gestational diseases. Likewise, several negative consequences for the fetus have been reported, including fetal growth restriction, increased risk of preterm birth and a changed susceptibility for later-life diseases. However, study results are diverging and causality has not been proven so far. Meta-analyses on the relationship between maternal vitamin D status and pregnancy outcomes revealed a wide heterogeneity of studied populations and the applied methodology in vitamin D assessment. Until today, clinical guidelines for supplementation cannot be based on high-quality evidence and it is not clear if the required intake for pregnant women differs from non-pregnant women. Long-term safety data of vitamin D supplementation in pregnant women has not been established and overdosing of vitamin D might have unfavorable effects, especially in mothers and newborns with mutations of genes involved in vitamin D metabolism. Reliable data from large observational and interventional randomized control trials are urgently needed as a basis for any detailed and safe recommendations for supplementation in the general population and, most importantly, in pregnant women. This is of utmost importance, as ensuring a sufficient vitamin D-supply of mother and child implies a great potential for the prevention of birth complications and development of diseases. KW - Vitamin D deficiency KW - Free vitamin D KW - Vitamin D binding protein KW - Epigenetics KW - DNA methylation KW - Single nucleotide polymorphism KW - Preeclampsia KW - Gestational diabetes mellitus KW - Small for gestational age KW - Long term health Y1 - 2018 U6 - https://doi.org/10.1016/j.jsbmb.2017.11.008 SN - 0960-0760 VL - 180 SP - 51 EP - 64 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Laeger, Thomas A1 - Castano-Martinez, Teresa A1 - Werno, Martin W. A1 - Japtok, Lukasz A1 - Baumeier, Christian A1 - Jonas, Wenke A1 - Kleuser, Burkhard A1 - Schürmann, Annette T1 - Dietary carbohydrates impair the protective effect of protein restriction against diabetes in NZO mice used as a model of type 2 diabetes JF - Diabetologia : journal of the European Association for the Study of Diabetes (EASD) N2 - Aims/hypothesis Low-protein diets are well known to improve glucose tolerance and increase energy expenditure. Increases in circulating fibroblast growth factor 21 (FGF21) have been implicated as a potential underlying mechanism. Methods We aimed to test whether low-protein diets in the context of a high-carbohydrate or high-fat regimen would also protect against type 2 diabetes in New Zealand Obese (NZO) mice used as a model of polygenetic obesity and type 2 diabetes. Mice were placed on high-fat diets that provided protein at control (16 kJ%; CON) or low (4 kJ%; low-protein/high-carbohydrate [LP/HC] or low-protein/high-fat [LP/HF]) levels. Results Protein restriction prevented the onset of hyperglycaemia and beta cell loss despite increased food intake and fat mass. The effect was seen only under conditions of a lower carbohydrate/fat ratio (LP/HF). When the carbohydrate/fat ratio was high (LP/HC), mice developed type 2 diabetes despite the robustly elevated hepatic FGF21 secretion and increased energy expenditure. Conclusion/interpretation Prevention of type 2 diabetes through protein restriction, without lowering food intake and body fat mass, is compromised by high dietary carbohydrates. Increased FGF21 levels and elevated energy expenditure do not protect against hyperglycaemia and type 2 diabetes per se. KW - Energy expenditure KW - FGF21 KW - Hyperglycaemia KW - Insulin resistance KW - NZO KW - Obesity KW - Protein restriction Y1 - 2018 U6 - https://doi.org/10.1007/s00125-018-4595-1 SN - 0012-186X SN - 1432-0428 VL - 61 IS - 6 SP - 1459 EP - 1469 PB - Springer CY - New York ER - TY - GEN A1 - Schulze, Matthias Bernd A1 - Martinez-Gonzalez, Miguel A. A1 - Fung, Teresa T. A1 - Lichtenstein, Alice H. A1 - Forouhi, Nita G. T1 - Food based dietary patterns and chronic disease prevention T2 - BMJ-British medical journal N2 - Matthias B Schulze and colleagues discuss current knowledge on the associations between dietary patterns and cancer, coronary heart disease, stroke, and type 2 diabetes, focusing on areas of uncertainty and future research directions. Y1 - 2018 U6 - https://doi.org/10.1136/bmj.k2396 SN - 1756-1833 VL - 361 PB - BMJ Publishing Group CY - London ER - TY - JOUR A1 - Galbete, Cecilia A1 - Kröger, Janine A1 - Jannasch, Franziska A1 - Iqbal, Khalid A1 - Schwingshackl, Lukas A1 - Schwedhelm, Carolina A1 - Weikert, Cornelia A1 - Boeing, Heiner A1 - Schulze, Matthias Bernd T1 - Nordic diet, Mediterranean diet, and the risk of chronic diseases BT - the EPIC-Potsdam study JF - BMC Medicine N2 - Background: The Mediterranean Diet (MedDiet) has been acknowledged as a healthy diet. However, its relation with risk of major chronic diseases in non-Mediterranean countries is inconclusive. The Nordic diet is proposed as an alternative across Northern Europe, although its associations with the risk of chronic diseases remain controversial. We aimed to investigate the association between the Nordic diet and the MedDiet with the risk of chronic disease (type 2 diabetes (T2D), myocardial infarction (MI), stroke, and cancer) in the EPIC-Potsdam cohort. Methods: The EPIC-Potsdam cohort recruited 27,548 participants between 1994 and 1998. After exclusion of prevalent cases, we evaluated baseline adherence to a score reflecting the Nordic diet and two MedDiet scores (tMDS, reflecting the traditional MedDiet score, and the MedPyr score, reflecting the MedDiet Pyramid). Cox regression models were applied to examine the association between the diet scores and the incidence of major chronic diseases. Results: During a follow-up of 10.6 years, 1376 cases of T2D, 312 of MI, 321 of stroke, and 1618 of cancer were identified. The Nordic diet showed a statistically non-significant inverse association with incidence of MI in the overall population and of stroke in men. Adherence to the MedDiet was associated with lower incidence of T2D (HR per 1 SD 0.93, 95% CI 0.88-0.98 for the tMDS score and 0.92, 0.87-0.97 for the MedPyr score). In women, the MedPyr score was also inversely associated with MI. No association was observed for any of the scores with cancer. Conclusions: In the EPIC-Potsdam cohort, the Nordic diet showed a possible beneficial effect on MI in the overall population and for stroke in men, while both scores reflecting the MedDiet conferred lower risk of T2D in the overall population and of MI in women. KW - Mediterranean diet KW - Nordic diet KW - regional diets KW - chronic diseases KW - diabetes KW - myocardial infarction KW - stroke KW - cancer KW - EPIC-Potsdam study KW - longitudinal analysis Y1 - 2018 U6 - https://doi.org/10.1186/s12916-018-1082-y SN - 1741-7015 VL - 16 PB - BMC CY - London ER - TY - JOUR A1 - Tsuprykov, Oleg A1 - Buse, Claudia A1 - Skoblo, Roman A1 - Haq, Afrozul A1 - Hocher, Berthold T1 - Reference intervals for measured and calculated free 25-hydroxyvitamin D in normal pregnancy JF - The Journal of Steroid Biochemistry and Molecular Biology N2 - The determination of free 25-hydroxyvitamin D (25(OH)D) as compared to the analysis of total 25-hydroxyvitamin D might reflect better the vitamin D status during pregnancy, since vitamin D-binding protein (DBP) concentrations increase throughout pregnancy and the vast majority of 25(OH)D is tightly bound to DBP thus strongly influencing total 25(OH)D. The concentration of the biologically active free 25(OH)D - on the other hand - is much less dependent on the DBP concentrations. The study was conducted in May-June 2016 in 368 Caucasian pregnant healthy women - residents of Northeastern Germany. Free 25(OH)D was either measured directly by commercial ELISA kit or assessed by calculation via total 25(OH)D, DBP, and albumin serum concentrations. Regardless of the detection method, free 25(OH)D lowers in the 3rd trimester comparing to the 1st trimester (by 12% and 21%, p < 0.05 and p < 0.001, for measured and calculated free 25(OH)D, respectively), whereas total 25(OH)D was not decreased in late pregnancy. DBP rises with gestational age. Total 25(OH)D was not correlated with serum calcium (p = 0.251), whereas free 25(OH)D was significantly (p = 0.007 for measured free 25(OH)D and p < 0.001 for calculated free 25(OH)D) positively correlated with calcium. All 25(OH) D isoforms were significantly negatively correlated with bone-specific alkaline phosphatase (BSAP), however the correlation strength was the lowest with total 25(OH)D (rho = -0.108, p = 0.038), whereas both measured and calculated free 25(OH)D revealed better associations with BSAP (rho = -0.203 and rho = -0.211 for measured and calculated free 25(OH)D, respectively, p < 0.001 for both). We established pregnancy trimester specific reference intervals for free measured and calculated 25(OH)D and DBP. Both measured and calculated free 25(OH)D showed better correlations with parameters of the endocrine vitamin D system (calcium and BSAP). Both ways of measuring free 25(OH)D in pregnant women are suitable as novel laboratory parameter for vitamin D status monitoring during human pregnancy and might replace in the future the routine total 25(OH)D assessment. KW - Measured free 25-hydroxyvitamin D KW - Calculated free 25-hydroxyvitamin D KW - Vitamin D-binding protein KW - Pregnancy KW - Reference intervals Y1 - 2018 U6 - https://doi.org/10.1016/j.jsbmb.2018.03.005 SN - 0960-0760 VL - 181 SP - 80 EP - 87 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Mueller, Steffen A1 - Engel, Tilman A1 - Müller, Juliane A1 - Stoll, Josefine A1 - Baur, Heiner A1 - Mayer, Frank T1 - Sensorimotor exercises and enhanced trunk function BT - a randomized controlled trial JF - International journal of sports medicine N2 - The aim of this study was to investigate the effect of a 6-week sensorimotor or resistance training on maximum trunk strength and response to sudden, high-intensity loading in athletes. Interventions showed no significant difference for maximum strength in concentric and eccentric testing (p>0.05). For perturbation compensation, higher peak torque response following SMT (Extension: +24Nm 95%CI +/- 19Nm; Rotation: + 19Nm 95%CI +/- 13Nm) and RT (Extension: +35Nm 95%CI +/- 16Nm; Rotation: +5Nm 95%CI +/- 4Nm) compared to CG (Extension: -4Nm 95%CI +/- 16Nm; Rotation: -2Nm 95%CI +/- 4Nm) was present (p<0.05). KW - core KW - training intervention KW - prevention KW - perturbation KW - MiSpEx* Y1 - 2018 U6 - https://doi.org/10.1055/a-0592-7286 SN - 0172-4622 SN - 1439-3964 VL - 39 IS - 7 SP - 555 EP - 563 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Bornhorst, Julia A1 - Kipp, Anna P. A1 - Haase, Hajo A1 - Meyer, Soeren A1 - Schwerdtle, Tanja T1 - The crux of inept biomarkers for risks and benefits of trace elements JF - Trends in Analytical Chemistry N2 - Nowadays, the role of trace elements (TE) is of growing interest because dyshomeostasis of selenium (Se), manganese (Mn), zinc (Zn), and copper (Cu) is supposed to be a risk factor for several diseases. Thereby, research focuses on identifying new biomarkers for the TE status to allow for a more reliable description of the individual TE and health status. This review mirrors a lack of well-defined, sensitive, and selective biomarkers and summarizes technical limitations to measure them. Thus, the capacity to assess the relationship between dietary TE intake, homeostasis, and health is restricted, which would otherwise provide the basis to define adequate intake levels of single TE in both healthy and diseased humans. Besides that, our knowledge is even more limited with respect to the real life situation of combined TE intake and putative interactions between single TE. KW - Trace elements KW - Copper KW - Zinc KW - Manganese KW - Selenium KW - Biomarker KW - Inductively coupled plasma mass spectrometry KW - Hyphenated techniques KW - Isotope ratios Y1 - 2018 U6 - https://doi.org/10.1016/j.trac.2017.11.007 SN - 0165-9936 SN - 1879-3142 VL - 104 SP - 183 EP - 190 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Maares, Maria A1 - Duman, Ayse A1 - Keil, Claudia A1 - Schwerdtle, Tanja A1 - Haase, Hajo T1 - The impact of apical and basolateral albumin on intestinal zinc resorption in the Caco-2/HT-29-MTX co-culture model JF - Metallomics : integrated biometal science N2 - The molecular mechanisms of intestinal zinc resorption and its regulation are still topics of ongoing research. To this end, the application of suitable in vitro intestinal models, optimized with regard to their cellular composition and medium constituents, is of crucial importance. As one vital aspect, the impact of cell culture media or buffer compounds, respectively, on the speciation and cellular availability of zinc has to be considered when investigating zinc resorption. Thus, the present study aims to investigate the impact of serum, and in particular its main constituent serum albumin, on zinc uptake and toxicity in the intestinal cell line Caco-2. Furthermore, the impact of serum albumin on zinc resorption is analyzed using a co-culture of Caco-2 cells and the mucin-producing goblet cell line HT-29-MTX. Apically added albumin significantly impaired zinc uptake into enterocytes and buffered its cytotoxicity. Yet, undigested albumin does not occur in the intestinal lumen in vivo and impairment of zinc uptake was abrogated by digestion of albumin. Interestingly, zinc uptake, as well as gene expression studies of mt1a and selected intestinal zinc transporters after zinc incubation for 24 h, did not show significant differences between 0 and 10% serum. Importantly, the basolateral application of serum in a transport study significantly enhanced fractional apical zinc resorption, suggesting that the occurrence of a zinc acceptor in the plasma considerably affects intestinal zinc resorption. This study demonstrates that the apical and basolateral medium composition is crucial when investigating zinc, particularly its intestinal resorption, using in vitro cell culture. Y1 - 2018 U6 - https://doi.org/10.1039/c8mt00064f SN - 1756-5901 SN - 1756-591X VL - 10 IS - 7 SP - 979 EP - 991 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Gubert, Priscila A1 - Puntel, Bruna A1 - Lehmen, Tassia A1 - Fessel, Joshua P. A1 - Cheng, Pan A1 - Bornhorst, Julia A1 - Trindade, Lucas Siqueira A1 - Avila, Daiana S. A1 - Aschner, Michael A1 - Soares, Felix A. A. T1 - Metabolic effects of manganese in the nematode Caenorhabditis elegans through DAergic pathway and transcription factors activation JF - Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system N2 - Manganese (Mn) is an essential trace element for physiological functions since it acts as an enzymatic co-factor. Nevertheless, overexposure to Mn has been associated with a pathologic condition called manganism. Furthermore, Mn has been reported to affect lipid metabolism by mechanisms which have yet to be established. Herein, we used the nematode Caenorhabditis elegans to examine Mn’s effects on the dopaminergic (DAergic) system and determine which transcription factors that regulate with lipid metabolism are affected by it. Worms were exposed to Mn for four hours in the presence of bacteria and in a liquid medium (85 mM NaCl). Mn increased fat storage as evidenced both by Oil Red O accumulation and triglyceride levels. In addition, metabolic activity was reduced as a reflection of decreased oxygen consumption caused by Mn. Mn also affected feeding behavior as evidenced by decreased pharyngeal pumping rate. DAergic neurons viability were not altered by Mn, however the dopamine levels were significantly reduced following Mn exposure. Furthermore, the expression of sbp-1 transcription factor and let-363 protein kinase responsible for lipid accumulation control was increased and decreased, respectively, by Mn. Altogether, our data suggest that Mn increases the fat storage in C. elegans, secondary to DAergic system alterations, under the control of SBP-1 and LET-363 proteins. KW - Manganese KW - Caenorhabditis elegans KW - Lipid metabolism KW - Dopaminergic system KW - Manganism Y1 - 2018 U6 - https://doi.org/10.1016/j.neuro.2018.04.008 SN - 0161-813X SN - 1872-9711 VL - 67 SP - 65 EP - 72 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Sammoud, Senda A1 - Nevill, Alan Michael A1 - Negra, Yassine A1 - Bouguezzi, Raja A1 - Chaabene, Helmi A1 - Hachana, Younes T1 - 100-m Breaststroke Swimming Performance in Youth Swimmers BT - the predictive value of anthropometrics JF - Pediatric exercise science N2 - This study aimed to estimate the optimal body size, limb segment length, and girth or breadth ratios of 100-m breaststroke performance in youth swimmers. In total, 59 swimmers [male: n= 39, age = 11.5 (1.3) y; female: n= 20, age = 12.0 (1.0) y] participated in this study. To identify size/shape characteristics associated with 100-m breaststroke swimming performance, we computed a multiplicative allometric log-linear regression model, which was refined using backward elimination. Results showed that the 100-m breaststroke performance revealed a significant negative association with fat mass and a significant positive association with the segment length ratio (arm ratio = hand length/forearm length) and limb girth ratio (girth ratio = forearm girth/wrist girth). In addition, leg length, biacromial breadth, and biiliocristal breadth revealed significant positive associations with the 100-m breaststroke performance. However, height and body mass did not contribute to the model, suggesting that the advantage of longer levers was limb-specific rather than a general whole-body advantage. In fact, it is only by adopting multiplicative allometric models that the previously mentioned ratios could have been derived. These results highlighted the importance of considering anthropometric characteristics of youth breaststroke swimmers for talent identification and/or athlete monitoring purposes. In addition, these findings may assist orienting swimmers to the appropriate stroke based on their anthropometric characteristics. KW - allometric model KW - maturity KW - limb lengths KW - girths and breadths Y1 - 2018 U6 - https://doi.org/10.1123/pes.2017-0220 SN - 0899-8493 SN - 1543-2920 VL - 30 IS - 3 SP - 393 EP - 401 PB - Human Kinetics Publ. CY - Champaign ER - TY - JOUR A1 - Becker, Katrin Anne A1 - Riethmueller, Joachim A1 - Seitz, Aaron P. A1 - Gardner, Aaron A1 - Boudreau, Ryan A1 - Kamler, Markus A1 - Kleuser, Burkhard A1 - Schuchman, Edward A1 - Caldwell, Charles C. A1 - Edwards, Michael J. A1 - Grassme, Heike A1 - Brodlie, Malcolm A1 - Gulbins, Erich T1 - Sphingolipids as targets for inhalation treatment of cystic fibrosis JF - Advanced drug delivery reviews N2 - Studies over the past several years have demonstrated the important role of sphingolipids in cystic fibrosis (CF), chronic obstructive pulmonary disease and acute lung injury. Ceramide is increased in airway epithelial cells and alveolar macrophages of CF mice and humans, while sphingosine is dramatically decreased. This increase in ceramide results in chronic inflammation, increased death of epithelial cells, release of DNA into the bronchial lumen and thereby an impairment of mucociliary clearance; while the lack of sphingosine in airway epithelial cells causes high infection susceptibility in CF mice and possibly patients. The increase in ceramide mediates an ectopic expression of beta 1-integrins in the luminal membrane of CF epithelial cells, which results, via an unknown mechanism, in a down-regulation of acid ceramidase. It is predominantly this down-regulation of acid ceramidase that results in the imbalance of ceramide and sphingosine in CF cells. Correction of ceramide and sphingosine levels can be achieved by inhalation of functional acid sphingomyelinase inhibitors, recombinant acid ceramidase or by normalization of beta 1-integrin expression and subsequent re-expression of endogenous acid ceramidase. These treatments correct pulmonary inflammation and prevent or treat, respectively, acute and chronic pulmonary infections in CF mice with Staphylococcus aureus and mucoid or non-mucoid Pseudomonas aeruginosa. Inhalation of sphingosine corrects sphingosine levels only and seems to mainly act against the infection. Many antidepressants are functional inhibitors of the acid sphingomyelinase and were designed for systemic treatment of major depression. These drugs could be repurposed to treat CF by inhalation. KW - Ceramide KW - Acid sphingomyelinase KW - Cystic fibrosis KW - COPD KW - Inhalation Y1 - 2018 U6 - https://doi.org/10.1016/j.addr.2018.04.015 SN - 0169-409X SN - 1872-8294 VL - 133 SP - 66 EP - 75 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schwingshackl, Lukas A1 - Ruzanska, Ulrike Alexandra A1 - Anton, Verena A1 - Wallroth, Raphael A1 - Ohla, Kathrin A1 - Knueppel, Sven A1 - Schulze, Matthias Bernd A1 - Pischon, Tobias A1 - Deutschbein, Johannes A1 - Schenk, Liane A1 - Warschburger, Petra A1 - Harttig, Ulrich A1 - Boeing, Heiner A1 - Bergmann, Manuela M. T1 - The NutriAct Family Study: a web-based prospective study on the epidemiological, psychological and sociological basis of food choice JF - BMC public health N2 - Background: Most studies on food choice have been focussing on the individual level but familial aspects may also play an important role. This paper reports of a novel study that will focus on the familial aspects of the formation of food choice among men and women aged 50-70 years by recruiting spouses and siblings (NutriAct Family Study; NFS). Discussion: Until August 4th 2017, 4783 EPIC-Participants were contacted by mail of which 446 persons recruited 2 to 5 family members (including themselves) resulting in 1032 participants, of whom 82% had started answering or already completed the questionnaires. Of the 4337 remaining EPIC-participants who had been contacted, 1040 (24%) did not respond at all, and 3297 (76%) responded but declined, in 51% of the cases because of the request to recruit at least 2 family members in the respective age range. The developed recruitment procedures and web-based methods of data collection are capable to generate the required study population including the data on individual and inter-personal determinants which will be linkable to food choice. The information on familial links among the study participants will show the role of familial traits in midlife for the adoption of food choices supporting healthy aging. KW - NutriAct family study KW - Study protocol KW - Food choice KW - Determinants Y1 - 2018 U6 - https://doi.org/10.1186/s12889-018-5814-x SN - 1471-2458 VL - 18 PB - BMC CY - London ER - TY - JOUR A1 - Gao, Lin-rui A1 - Wang, Guang A1 - Zhang, Jing A1 - Li, Shuai A1 - Chuai, Manli A1 - Bao, Yongping A1 - Hocher, Berthold A1 - Yang, Xuesong T1 - High salt-induced excess reactive oxygen species production resulted in heart tube malformation during gastrulation JF - Journal of Cellular Physiology N2 - An association has been proved between high salt consumption and cardiovascular mortality. In vertebrates, the heart is the first functional organ to be formed. However, it is not clear whether high-salt exposure has an adverse impact on cardiogenesis. Here we report high-salt exposure inhibited basement membrane breakdown by affecting RhoA, thus disturbing the expression of Slug/E-cadherin/N-cadherin/Laminin and interfering with mesoderm formation during the epithelial-mesenchymal transition(EMT). Furthermore, the DiI(+) cell migration trajectory in vivo and scratch wound assays in vitro indicated that high-salt exposure restricted cell migration of cardiac progenitors, which was caused by the weaker cytoskeleton structure and unaltered corresponding adhesion junctions at HH7. Besides, down-regulation of GATA4/5/6, Nkx2.5, TBX5, and Mef2c and up-regulation of Wnt3a/-catenin caused aberrant cardiomyocyte differentiation at HH7 and HH10. High-salt exposure also inhibited cell proliferation and promoted apoptosis. Most importantly, our study revealed that excessive reactive oxygen species(ROS)generated by high salt disturbed the expression of cardiac-related genes, detrimentally affecting the above process including EMT, cell migration, differentiation, cell proliferation and apoptosis, which is the major cause of malformation of heart tubes. KW - cardiac progenitor migration and differentiation KW - chick embryo KW - heart tube KW - high salt KW - reactive oxygen species Y1 - 2018 U6 - https://doi.org/10.1002/jcp.26528 SN - 0021-9541 SN - 1097-4652 VL - 233 IS - 9 SP - 7120 EP - 7133 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Jamnok, Jutatip A1 - Sanchaisuriya, Kanokwan A1 - Yamsri, Supawadee A1 - Fucharoen, Goonnapa A1 - Fucharoen, Supan A1 - Schweigert, Florian J. A1 - Sanchaisuriya, Pattara T1 - Application of a new portable nephelometer for screening thalassemia in countries with limited resources T2 - International Journal of Laboratory Hematology Y1 - 2018 SN - 1751-5521 SN - 1751-553X VL - 40 SP - 62 EP - 62 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Vogel, Heike A1 - Kamitz, Anne A1 - Hallahan, Nicole A1 - Lebek, Sandra A1 - Schallschmidt, Tanja A1 - Jonas, Wenke A1 - Jähnert, Markus A1 - Gottmann, Pascal A1 - Zellner, Lisa A1 - Kanzleiter, Timo A1 - Damen, Mareike A1 - Altenhofen, Delsi A1 - Burkhardt, Ralph A1 - Renner, Simone A1 - Dahlhoff, Maik A1 - Wolf, Eckhard A1 - Müller, Timo Dirk A1 - Blüher, Matthias A1 - Joost, Hans-Georg A1 - Chadt, Alexandra A1 - Al-Hasani, Hadi A1 - Schürmann, Annette T1 - A collective diabetes cross in combination with a computational framework to dissect the genetics of human obesity and Type 2 diabetes JF - Human molecular genetics N2 - To explore the genetic determinants of obesity and Type 2 diabetes (T2D), the German Center for Diabetes Research (DZD) conducted crossbreedings of the obese and diabetes-prone New Zealand Obese mouse strain with four different lean strains (B6, DBA, C3H, 129P2) that vary in their susceptibility to develop T2D. Genome-wide linkage analyses localized more than 290 quantitative trait loci (QTL) for obesity, 190 QTL for diabetes-related traits and 100 QTL for plasma metabolites in the out-cross populations. A computational framework was developed that allowed to refine critical regions and to nominate a small number of candidate genes by integrating reciprocal haplotype mapping and transcriptome data. The efficiency of the complex procedure was demonstrated for one obesity QTL. The genomic interval of 35 Mb with 502 annotated candidate genes was narrowed down to six candidates. Accordingly, congenic mice retained the obesity phenotype owing to an interval that contains three of the six candidate genes. Among these the phospholipase PLA2G4A exhibited an elevated expression in adipose tissue of obese human subjects and is therefore a critical regulator of the obesity locus. Together, our broad and complex approach demonstrates that combined- and comparative-cross analysis exhibits improved mapping resolution and represents a valid tool for the identification of disease genes. Y1 - 2018 U6 - https://doi.org/10.1093/hmg/ddy217 SN - 0964-6906 SN - 1460-2083 VL - 27 IS - 17 SP - 3099 EP - 3112 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - Jamnok, Jutatip A1 - Sanchaisuriya, Kanokwan A1 - Yamsri, Supawadee A1 - Fucharoen, Goonnapa A1 - Fucharoen, Supan A1 - Schweigert, Florian J. A1 - Sanchaisuriya, Pattara T1 - Application of a new portable nephelometer for screening thalassemia in countries with limited resources T2 - International journal of laboratory hematology N2 - One-tube osmotic fragility (OF) test is a rapid test used widely for screening thalassemia in countries with limited resources. The test has important limitation in that its accuracy relies on observers’ experience. The iCheck Turbidity is a prototype of portable nephelometer developed by BioAnalyt (Bioanalyt GmbH, Germany). In this study, we assessed the applicability of the iCheck Turbidity, for checking turbidity of the OF-test Y1 - 2018 SN - 1751-5521 SN - 1751-553X VL - 40 SP - 62 EP - 62 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Ruszkiewicz, Joanna A. A1 - de Macedo, Gabriel Teixeira A1 - Miranda-Vizuete, Antonio A1 - Teixeira da Rocha, Joao B. A1 - Bowman, Aaron B. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Aschner, Michael T1 - The cytoplasmic thioredoxin system in Caenorhabditis elegans affords protection from methylmercury in an age-specific manner JF - Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system N2 - Methylmercury (MeHg) is an environmental pollutant linked to many neurological defects, especially in developing individuals. The thioredoxin (TRX) system is a key redox regulator affected by MeHg toxicity, however the mechanisms and consequences of MeHg-induced dysfunction are not completely understood. This study evaluated the role of the TRX system in C. elegans susceptibility to MeHg during development. Worms lacking or overexpressing proteins from the TRX family were exposed to MeHg for 1 h at different developmental stage: L1, L4 and adult. Worms without cytoplasmic thioredoxin system exhibited age-specific susceptibility to MeHg when compared to wild-type (wt). This susceptibility corresponded partially to decreased total glutathione (GSH) levels and enhanced degeneration of dopaminergic neurons. In contrast, the overexpression of the cytoplasmic system TRX-1/TRXR-1 did not provide substantial protection against MeHg. Moreover, transgenic worms exhibited decreased protein expression for cytoplasmic thioredoxin reductase (TRXR-1). Both mitochondrial thioredoxin system TRX-2/TRXR-2, as well as other thioredoxin-like proteins: TRX-3, TRX-4, TRX-5 did not show significant role in C. elegans resistance to MeHg. Based on the current findings, the cytoplasmic thioredoxin system TRX-1/TRXR-1 emerges as an important age-sensitive protectant against MeHg toxicity in C. elegans. KW - Methylmercury KW - Age KW - Development KW - C. elegans KW - Thioredoxin KW - Thioredoxin reductase Y1 - 2018 U6 - https://doi.org/10.1016/j.neuro.2018.08.007 SN - 0161-813X SN - 1872-9711 VL - 68 SP - 189 EP - 202 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Eckel, Nathalie A1 - Li, Yanping A1 - Kuxhaus, Olga A1 - Stefan, Norbert A1 - Hu, Frank B. A1 - Schulze, Matthias Bernd T1 - Transition from metabolic healthy to unhealthy phenotypes and association with cardiovascular disease risk across BMI categories in 90 257 women (the Nurses' Health Study) BT - 30 year follow-up from a prospective cohort study JF - The lancet diabetes & endocrinology N2 - Background Cardiovascular disease risk among individuals across different categories of BMI might depend on their metabolic health. It remains unclear to what extent metabolic health status changes over time and whether this affects cardiovascular disease risk. In this study, we aimed to examine the association between metabolic health and its change over time and cardiovascular disease risk across BMI categories. Findings During 2 127 391 person-years of follow-up with a median follow-up of 24 years, we documented 6306 cases of cardiovascular disease including 3304 myocardial infarction cases and 3080 strokes. Cardiovascular disease risk of women with metabolically healthy obesity was increased compared with women with metabolically healthy normal weight (HR 1.39, 95% CI 1.15-1.68), but risk was considerably higher in women with metabolically unhealthy normal weight (2.43, 2.19-2.68), overweight (2.61, 2.36-2.89) and obesity (3.15, 2.83-3.50). The majority of metabolically healthy women converted to unhealthy phenotypes (2555 [84%] of 3027 women with obesity, 22 215 [68%] of 32 882 women with normal-weight after 20 years). Women who maintained metabolically healthy obesity during follow-up were still at a higher cardiovascular disease risk compared with women with stable healthy normal weight (HR 1.57, 1.03-2.38), yet this risk was lower than for initially metabolically healthy women who converted to an unhealthy phenotype (normal-weight 1.90, 1.66-2.17 vs obesity 2.74, 2.30-3.27). Particularly incident diabetes and hypertension increased the risk among women with initial metabolic health. Interpretation Even when metabolic health is maintained during long periods of time, obesity remains a risk factor for cardiovascular disease. However, risks are highest for metabolically unhealthy women across all BMI categories. A large proportion of metabolically healthy women converted to an unhealthy phenotype over time across all BMI categories, which is associated with an increased cardiovascular disease risk. Copyright (C) 2018 Elsevier Ltd. All rights reserved. Y1 - 2018 U6 - https://doi.org/10.1016/S2213-8587(18)30137-2 SN - 2213-8587 VL - 6 IS - 9 SP - 714 EP - 724 PB - Elsevier CY - New York ER - TY - JOUR A1 - Krstic, Jelena A1 - Reinisch, Isabel A1 - Schupp, Michael A1 - Schulz, Tim Julius A1 - Prokesch, Andreas T1 - p53 functions in adipose tissue metabolism and homeostasis JF - International journal of molecular sciences N2 - As a tumor suppressor and the most frequently mutated gene in cancer, p53 is among the best-described molecules in medical research. As cancer is in most cases an age-related disease, it seems paradoxical that p53 is so strongly conserved from early multicellular organisms to humans. A function not directly related to tumor suppression, such as the regulation of metabolism in nontransformed cells, could explain this selective pressure. While this role of p53 in cellular metabolism is gradually emerging, it is imperative to dissect the tissue-and cell-specific actions of p53 and its downstream signaling pathways. In this review, we focus on studies reporting p53's impact on adipocyte development, function, and maintenance, as well as the causes and consequences of altered p53 levels in white and brown adipose tissue (AT) with respect to systemic energy homeostasis. While whole body p53 knockout mice gain less weight and fat mass under a high-fat diet owing to increased energy expenditure, modifying p53 expression specifically in adipocytes yields more refined insights: (1) p53 is a negative regulator of in vitro adipogenesis; (2) p53 levels in white AT are increased in diet-induced and genetic obesity mouse models and in obese humans; (3) functionally, elevated p53 in white AT increases senescence and chronic inflammation, aggravating systemic insulin resistance; (4) p53 is not required for normal development of brown AT; and (5) when p53 is activated in brown AT in mice fed a high-fat diet, it increases brown AT temperature and brown AT marker gene expression, thereby contributing to reduced fat mass accumulation. In addition, p53 is increasingly being recognized as crucial player in nutrient sensing pathways. Hence, despite existence of contradictory findings and a varying density of evidence, several functions of p53 in adipocytes and ATs have been emerging, positioning p53 as an essential regulatory hub in ATs. Future studies need to make use of more sophisticated in vivo model systems and should identify an AT-specific set of p53 target genes and downstream pathways upon different (nutrient) challenges to identify novel therapeutic targets to curb metabolic diseases KW - p53 KW - adipose tissue KW - metabolic syndrome KW - obesity KW - adipogenesis KW - insulin resistance Y1 - 2018 U6 - https://doi.org/10.3390/ijms19092622 SN - 1422-0067 VL - 19 IS - 9 PB - MDPI CY - Basel ER - TY - JOUR A1 - Peres, Tanara Vieira A1 - Arantes, Leticia P. A1 - Miah, Mahfuzur R. A1 - Bornhorst, Julia A1 - Schwerdtle, Tanja A1 - Bowman, Aaron B. A1 - Leal, Rodrigo B. A1 - Aschner, Michael T1 - Role of Caenorhabditis elegans AKT-1/2 and SGK-1 in Manganese Toxicity JF - Neurotoxicity Research N2 - Excessive levels of the essential metal manganese (Mn) may cause a syndrome similar to Parkinson’s disease. The model organism Caenorhabditis elegans mimics some of Mn effects in mammals, including dopaminergic neurodegeneration, oxidative stress, and increased levels of AKT. The evolutionarily conserved insulin/insulin-like growth factor-1 signaling pathway (IIS) modulates worm longevity, metabolism, and antioxidant responses by antagonizing the transcription factors DAF-16/FOXO and SKN-1/Nrf-2. AKT-1, AKT-2, and SGK-1 act upstream of these transcription factors. To study the role of these proteins in C. elegans response to Mn intoxication, wild-type N2 and loss-of-function mutants were exposed to Mn (2.5 to 100 mM) for 1 h at the L1 larval stage. Strains with loss-of-function in akt-1, akt-2, and sgk-1 had higher resistance to Mn compared to N2 in the survival test. All strains tested accumulated Mn similarly, as shown by ICP-MS. DAF-16 nuclear translocation was observed by fluorescence microscopy in WT and loss-of-function strains exposed to Mn. qRT-PCR data indicate increased expression of γ-glutamyl cysteine synthetase (GCS-1) antioxidant enzyme in akt-1 mutants. The expression of sod-3 (superoxide dismutase homologue) was increased in the akt-1 mutant worms, independent of Mn treatment. However, dopaminergic neurons degenerated even in the more resistant strains. Dopaminergic function was evaluated with the basal slowing response behavioral test and dopaminergic neuron integrity was evaluated using worms expressing green fluorescent protein (GFP) under the dopamine transporter (DAT-1) promoter. These results suggest that AKT-1/2 and SGK-1 play a role in C. elegans response to Mn intoxication. However, tissue-specific responses may occur in dopaminergic neurons, contributing to degeneration. KW - Manganese . C. elegans KW - Signaling pathways KW - DAF-16 KW - Akt/PKB KW - SGK-1 Y1 - 2018 U6 - https://doi.org/10.1007/s12640-018-9915-1 SN - 1029-8428 SN - 1476-3524 VL - 34 IS - 3 SP - 584 EP - 596 PB - Springer CY - New York ER - TY - JOUR A1 - Galbete, Cecilia A1 - Schwingshackl, Lukas A1 - Schwedhelm, Carolina A1 - Boeing, Heiner A1 - Schulze, Matthias Bernd T1 - Evaluating Mediterranean diet and risk of chronic disease in cohort studies BT - an umbrella review of meta-analyses JF - European journal of epidemiology N2 - Several meta-analyses have been published summarizing the associations of the Mediterranean diet (MedDiet) with chronic diseases. We evaluated the quality and credibility of evidence from these meta-analyses as well as characterized the different indices used to define MedDiet and re-calculated the associations with the different indices identified. We conducted an umbrella review of meta-analyses on cohort studies evaluating the association of the MedDiet with type 2 diabetes, cardiovascular disease, cancer and cognitive-related diseases. We used the AMSTAR (A MeaSurement Tool to Assess systematic Reviews) checklist to evaluate the methodological quality of the meta-analyses, and the NutriGrade scoring system to evaluate the credibility of evidence. We also identified different indices used to define MedDiet; tests for subgroup differences were performed to compare the associations with the different indices when at least 2 studies were available for different definitions. Fourteen publications were identified and within them 27 meta-analyses which were based on 70 primary studies. Almost all meta-analyses reported inverse associations between MedDiet and risk of chronic disease, but the credibility of evidence was rated low to moderate. Moreover, substantial heterogeneity was observed on the use of the indices assessing adherence to the MedDiet, but two indices were the most used ones [Trichopoulou MedDiet (tMedDiet) and alternative MedDiet (aMedDiet)]. Overall, we observed little difference in risk associations comparing different MedDiet indices in the subgroup meta-analyses. Future prospective cohort studies are advised to use more homogenous definitions of the MedDiet to improve the comparability across meta-analyses. KW - Mediterranean diet KW - Chronic diseases KW - Umbrella review KW - Meta-analyses KW - Cohort studies KW - Heterogeneity Y1 - 2018 U6 - https://doi.org/10.1007/s10654-018-0427-3 SN - 0393-2990 SN - 1573-7284 VL - 33 IS - 10 SP - 909 EP - 931 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Odongo, Grace Akinyi A1 - Schlotz, Nina A1 - Baldermann, Susanne A1 - Neugart, Susanne A1 - Huyskens-Keil, Susanne A1 - Ngwene, Benard A1 - Trierweiler, Bernhard A1 - Schreiner, Monika A1 - Lamy, Evelyn T1 - African Nightshade (Solanum scabrum Mill.) BT - Impact of Cultivation and Plant Processing on Its Health Promoting Potential as Determined in a Human Liver Cell Model JF - Nutrients N2 - Plant cultivation and processing may impact nutrient and phytochemical content of vegetables. The present study aimed at determining the influence of cultivation and processing on the health promoting capacity of African nightshade (Solanum scabrum Mill.) leaves, an indigenous vegetable, rich in nutrients and phytochemicals. Anti-genotoxicity against the human liver carcinogen aflatoxin B1 (AFB(1)) as determined by the comet assay and radical oxygen species (ROS) scavenging capacity of ethanolic and aqueous extracts were investigated in human derived liver (HepG2) cells. ROS scavenging activity was assessed using electron paramagnetic spin resonance and quantification of ARE/Nrf2 mediated gene expression. The cultivation was done under different environmental conditions. The processing included fermentation and cooking; postharvest ultraviolet irradiation (UV-C) treatment was also investigated. Overall, S. scabrum extracts showed strong health promoting potential, the highest potential was observed with the fermented extract, which showed a 60% reduction of AFB(1) induced DNA damage and a 38% reduction in FeSO4 induced oxidative stress. The content of total polyphenols, carotenoids and chlorophylls was indeed affected by cultivation and processing. Based on the present in vitro findings consumption of S. scabrum leaves could be further encouraged, preferentially after cooking or fermentation of the plant. KW - aflatoxin B1 KW - African indigenous vegetables KW - anti-genotoxicity KW - anti-oxidant activity KW - cancer chemoprevention KW - Solanaceae Y1 - 2018 U6 - https://doi.org/10.3390/nu10101532 SN - 2072-6643 VL - 10 IS - 10 PB - MDPI CY - Basel ER - TY - GEN A1 - Kleuser, Burkhard T1 - The enigma of sphingolipids in health and disease T2 - International journal of molecular sciences Y1 - 2018 U6 - https://doi.org/10.3390/ijms19103126 SN - 1422-0067 VL - 19 IS - 10 PB - MDPI CY - Basel ER - TY - GEN A1 - Henze, Andrea T1 - Proteinoxidation als Indikator des Alterungsphänotyps und Target einer individualisierten Ernährungsintervention (ProAID) T1 - Protein Oxidation as an Indicator of the Aging Phenotype and Target of an individualized Nutritional Intervention (ProAID) T2 - Ernährungs-Umschau : Forschung & Praxis N2 - Oxidative posttranslationale Modifikationen endogener Proteine werden v. a. durch reaktive Sauerstoff- und Stickstoffspezies (engl:. Reactive Oxygen Species, ROS, reactive nitrogen species, RNS) hervorgerufen und können sowohl reversibel (z. B. Disulfidbindungen) als auch irreversibel (z. B. Proteincarbonyle) erfolgen [1–3]. Lange wurde angenommen, dass oxidative posttranslationale Proteinmodifikationen (oxPTPM) nur von untergeordneter Bedeutung für den Metabolismus sind. Tatsächlich handelt es sich jedoch um einen physiologischen Prozess, der über die Modulation der Proteinstruktur auch die Proteinfunktion (z. B. Enzymaktivität, Stabilität) und somit zahlreiche Stoffwechselwege wie den Energiestoffwechsel, die Immunfunktion, die vaskuläre Funktion sowie Apoptose und Genexpression beeinflussen kann. Die Bildung von oxPTPM ist dabei hochreguliert und hängt u. a. von der Proteinstruktur, der Verfügbarkeit von ROS und RNS sowie dem lokalen Mikromilieu der Zelle ab [2, 4]. Y1 - 2018 SN - 0174-0008 VL - 65 IS - 10 SP - M566 EP - M567 PB - Umschau-Zeitschriftenverl. CY - Frankfurt, Main ER - TY - JOUR A1 - Reichel, Martin A1 - Rhein, Cosima A1 - Hofmann, Lena M. A1 - Monti, Juliana A1 - Japtok, Lukasz A1 - Langgartner, Dominik A1 - Füchsl, Andrea M. A1 - Kleuser, Burkhard A1 - Gulbins, Erich A1 - Hellerbrand, Claus A1 - Reber, Stefan O. A1 - Kornhuber, Johannes T1 - Chronic Psychosocial Stress in Mice Is Associated With Increased Acid Sphingomyelinase Activity in Liver and Serum and With Hepatic C16:0-Ceramide Accumulation JF - Frontiers in Psychiatry N2 - Chronic psychosocial stress adversely affects human morbidity and is a risk factor for inflammatory disorders, liver diseases, obesity, metabolic syndrome, and major depressive disorder (MDD). In recent studies, we found an association of MDD with an increase of acid sphingomyelinase (ASM) activity. Thus, we asked whether chronic psychosocial stress as a detrimental factor contributing to the emergence of MDD would also affect ASM activity and sphingolipid (SL) metabolism. To induce chronic psychosocial stress in male mice we employed the chronic subordinate colony housing (CSC) paradigm and compared them to non-stressed single housed control (SHC) mice. We determined Asm activity in liver and serum, hepatic SL concentrations as well as hepatic mRNA expression of genes involved in SL metabolism. We found that hepatic Asm activity was increased by 28% (P = 0.006) and secretory Asm activity by 47% (P = 0.002) in stressed mice. C16:0-Cer was increased by 40% (P = 0.008). Gene expression analysis further revealed an increased expression of tumor necrosis factor (TNF)-alpha (P = 0.009) and of several genes involved in SL metabolism (Cers5, P = 0.028; Cers6, P = 0.045; Gba, P = 0.049; Gba2, P = 0.030; Ormdl2, P = 0.034; Smpdl3B; P = 0.013). Our data thus provides first evidence that chronic psychosocial stress, at least in mice, induces alterations in SL metabolism, which in turn might be involved in mediating the adverse health effects of chronic psychosocial stress and peripheral changes occurring in mood disorders. KW - chronic psychosocial stress KW - acid sphingomyelinase KW - ceramide KW - sphingolipid metabolism KW - chronic subordinate colony housing (CSC) KW - liver metabolism Y1 - 2018 U6 - https://doi.org/10.3389/fpsyt.2018.00496 SN - 1664-0640 VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Uhlig, Katja A1 - Gehre, Christian P. A1 - Kammerer, Sarah A1 - Küpper, Jan-Heiner A1 - Coleman, Charles Dominic A1 - Püschel, Gerhard Paul A1 - Duschl, Claus T1 - Real-time monitoring of oxygen consumption of hepatocytes in a microbioreactor T2 - Toxicology letters Y1 - 2018 U6 - https://doi.org/10.1016/j.toxlet.2018.06.652 SN - 0378-4274 SN - 1879-3169 VL - 295 SP - S115 EP - S115 PB - Elsevier CY - Clare ER - TY - JOUR A1 - Plöhn, Svenja A1 - Edelmann, Bärbel A1 - Japtok, Lukasz A1 - He, Xingxuan A1 - Hose, Matthias A1 - Hansen, Wiebke A1 - Schuchman, Edward H. A1 - Eckstein, Anja A1 - Berchner-Pfannschmidt, Utta T1 - CD40 enhances sphingolipids in orbital fibroblasts BT - potential role of sphingosine-1-phosphate in inflammatory T-Cell migration in graves' orbitopathy JF - Investigative ophthalmology & visual science N2 - METHODS. OFs and T cells were derived from GO patients and healthy control (Ctl) persons. S1P abundance in orbital tissues was evaluated by immunofluorescence. OFs were stimulated with CD40 ligand and S1P levels were determined by ELISA. Further, activities of acid sphingomyelinase (ASM), acid ceramidase, and sphingosine kinase were measured by ultraperformance liquid chromatography. Sphingosine and ceramide contents were analyzed by mass spectrometry. Finally, the role for S1P in T-cell attraction was investigated by T-cell migration assays. RESULTS. GO orbital tissue showed elevated amounts of S1P as compared to control samples. Stimulation of CD40 induced S1P expression in GO-derived OFs, while Ctl-OFs remained unaffected. A significant increase of ASM and sphingosine kinase activities, as well as lipid formation, was observed in GO-derived OFs. Migration assay of T cells in the presence of SphK inhibitor revealed that S1P released by GO-OFs attracted T cells for migration. CONCLUSIONS. The results demonstrated that CD40 ligand stimulates GO fibroblast to produce S1P, which is a driving force for T-cell migration. The results support the use of S1P receptor signaling modulators in GO management. KW - inflammation Y1 - 2018 U6 - https://doi.org/10.1167/iovs.18-25466 SN - 0146-0404 SN - 1552-5783 VL - 59 IS - 13 SP - 5391 EP - 5397 PB - Association for Research in Vision and Opthalmology CY - Rockville ER - TY - JOUR A1 - Wirsching, Jan A1 - Grassmann, Sophie A1 - Eichelmann, Fabian A1 - Harms, Laura Malin A1 - Schenk, Matthew A1 - Barth, Eva A1 - Berndzen, Alide A1 - Olalekan, Moses A1 - Sarmini, Leen A1 - Zuberer, Hedwig A1 - Aleksandrova, Krasimira T1 - Development and reliability assessment of a new quality appraisal tool for cross-sectional studies using biomarker data (BIOCROSS) JF - BMC Medical Research Methodology N2 - Background Biomarker-based analyses are commonly reported in observational epidemiological studies; however currently there are no specific study quality assessment tools to assist evaluation of conducted research. Accounting for study design and biomarker measurement would be important for deriving valid conclusions when conducting systematic data evaluation. Methods We developed a study quality assessment tool designed specifically to assess biomarker-based cross-sectional studies (BIOCROSS) and evaluated its inter-rater reliability. The tool includes 10-items covering 5 domains: ‘Study rational’, ‘Design/Methods’, ‘Data analysis’, ‘Data interpretation’ and ‘Biomarker measurement’, aiming to assess different quality features of biomarker cross-sectional studies. To evaluate the inter-rater reliability, 30 studies were distributed among 5 raters and intraclass correlation coefficients (ICC-s) were derived from respective ratings. Results The estimated overall ICC between the 5 raters was 0.57 (95% Confidence Interval (CI): 0.38–0.74) indicating a good inter-rater reliability. The ICC-s ranged from 0.11 (95% CI: 0.01–0.27) for the domain ‘Study rational’ to 0.56 (95% CI: 0.40–0.72) for the domain ‘Data interpretation’. Conclusion BIOCROSS is a new study quality assessment tool suitable for evaluation of reporting quality from cross-sectional epidemiological studies employing biomarker data. The tool proved to be reliable for use by biomedical scientists with diverse backgrounds and could facilitate comprehensive review of biomarker studies in human research. KW - BIOCROSS KW - Quality appraisal KW - Evaluation tool KW - Cross-sectional studies Y1 - 2018 U6 - https://doi.org/10.1186/s12874-018-0583-x SN - 1471-2288 VL - 18 PB - BMC CY - London ER - TY - JOUR A1 - Werno, Martin Witold A1 - Wilhelmi, Ilka A1 - Kuropka, Benno A1 - Ebert, Franziska A1 - Freund, Christian A1 - Schürmann, Annette T1 - The GTPase ARFRP1 affects lipid droplet protein composition and triglyceride release from intracellular storage of intestinal Caco-2 cells JF - Biochemical and biophysical research communications N2 - Intestinal release of dietary triglycerides via chylomicrons is the major contributor to elevated postprandial triglyceride levels. Dietary lipids can be transiently stored in cytosolic lipid droplets (LDs) located in intestinal enterocytes for later release. ADP ribosylation factor-related protein 1 (ARFRP1) participates in processes of LD growth in adipocytes and in lipidation of lipoproteins in liver and intestine. This study aims to explore the impact of ARFRP1 on LD organization and its interplay with chylomicron-mediated triglyceride release in intestinal-like Caco-2 cells. Suppression of Arfrp1 reduced release of intracellularly derived triglycerides (0.69-fold) and increased the abundance of transitional endoplasmic reticulum ATPase TERA/VCP, fatty acid synthase-associated factor 2 (FAF2) and perilipin 2 (Plin2) at the LD surface. Furthermore, TERA/VCP and FAF2 co-occurred more frequently with ATGL at LDs, suggesting a reduced adipocyte triglyceride lipase (ATGL)-mediated lipolysis. Accordingly, inhibition of lipolysis reduced lipid release from intracellular storage pools by the same magnitude as Arfrp1 depletion. Thus, the lack of Arfrp1 increases the abundance of lipolysis-modulating enzymes TERA/VCP, FAF2 and Plin2 at LDs, which might decrease lipolysis and reduce availability of fatty acids for triglyceride synthesis and their release via chylomicrons. (C) 2018 The Authors. Published by Elsevier Inc. KW - Chylomicron KW - Lipid droplet proteome KW - Triglyceride secretion KW - Lipolysis Y1 - 2018 U6 - https://doi.org/10.1016/j.bbrc.2018.10.092 SN - 0006-291X SN - 1090-2104 VL - 506 IS - 1 SP - 259 EP - 265 PB - Elsevier CY - San Diego ER -