TY - GEN A1 - Perlich, Anja A1 - Meinel, Christoph T1 - Cooperative Note-Taking in Psychotherapy Sessions BT - an evaluation of the T2 - 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom) N2 - In the course of patient treatments, psychotherapists aim to meet the challenges of being both a trusted, knowledgeable conversation partner and a diligent documentalist. We are developing the digital whiteboard system Tele-Board MED (TBM), which allows the therapist to take digital notes during the session together with the patient. This study investigates what therapists are experiencing when they document with TBM in patient sessions for the first time and whether this documentation saves them time when writing official clinical documents. As the core of this study, we conducted four anamnesis session dialogues with behavior psychotherapists and volunteers acting in the role of patients. Following a mixed-method approach, the data collection and analysis involved self-reported emotion samples, user experience curves and questionnaires. We found that even in the very first patient session with TBM, therapists come to feel comfortable, develop a positive feeling and can concentrate on the patient. Regarding administrative documentation tasks, we found with the TBM report generation feature the therapists save 60% of the time they normally spend on writing case reports to the health insurance. KW - user experience KW - emotion measurement KW - computer-mediated therapy KW - behavior psychotherapy KW - human-computer interaction KW - medical documentation KW - note-taking Y1 - 2018 SN - 978-1-5386-4294-8 PB - IEEE CY - New York ER - TY - GEN A1 - Gawron, Marian A1 - Cheng, Feng A1 - Meinel, Christoph T1 - Automatic vulnerability classification using machine learning T2 - Risks and Security of Internet and Systems N2 - The classification of vulnerabilities is a fundamental step to derive formal attributes that allow a deeper analysis. Therefore, it is required that this classification has to be performed timely and accurate. Since the current situation demands a manual interaction in the classification process, the timely processing becomes a serious issue. Thus, we propose an automated alternative to the manual classification, because the amount of identified vulnerabilities per day cannot be processed manually anymore. We implemented two different approaches that are able to automatically classify vulnerabilities based on the vulnerability description. We evaluated our approaches, which use Neural Networks and the Naive Bayes methods respectively, on the base of publicly known vulnerabilities. KW - Vulnerability analysis KW - Security analytics KW - Data mining Machine learning KW - Neural Networks Y1 - 2018 SN - 978-3-319-76687-4 SN - 978-3-319-76686-7 U6 - https://doi.org/10.1007/978-3-319-76687-4_1 SN - 0302-9743 SN - 1611-3349 SP - 3 EP - 17 PB - Springer CY - Cham ER - TY - GEN A1 - Bauer, Matthias A1 - Malchow, Martin A1 - Meinel, Christoph T1 - Improving access to online lecture videos T2 - Proceedings of 2018 IEEE Global Engineering Education Conference (EDUCON) N2 - In university teaching today, it is common practice to record regular lectures and special events such as conferences and speeches. With these recordings, a large fundus of video teaching material can be created quickly and easily. Typically, lectures have a length of about one and a half hours and usually take place once or twice a week based on the credit hours. Depending on the number of lectures and other events recorded, the number of recordings available is increasing rapidly, which means that an appropriate form of provisioning is essential for the students. This is usually done in the form of lecture video platforms. In this work, we have investigated how lecture video platforms and the contained knowledge can be improved and accessed more easily by an increasing number of students. We came up with a multistep process we have applied to our own lecture video web portal that can be applied to other solutions as well. KW - E-Learning KW - Lecture Video Archive KW - E-Lecture KW - Lecture Recording KW - HTML5 KW - HLS KW - Flash Y1 - 2018 SN - 978-1-5386-2957-4 U6 - https://doi.org/10.1109/EDUCON.2018.8363361 SN - 2165-9567 SP - 1161 EP - 1168 PB - IEEE CY - New York ER - TY - GEN A1 - Malchow, Martin A1 - Bauer, Matthias A1 - Meinel, Christoph T1 - Embedded smart home — remote lab MOOC with optional real hardware experience for over 4000 students T2 - Proceedings of 2018 IEEE Global Engineering Education Conference (EDUCON) N2 - MOOCs (Massive Open Online Courses) become more and more popular for learners of all ages to study further or to learn new subjects of interest. The purpose of this paper is to introduce a different MOOC course style. Typically, video content is shown teaching the student new information. After watching a video, self-test questions can be answered. Finally, the student answers weekly exams and final exams like the self test questions. Out of the points that have been scored for weekly and final exams a certificate can be issued. Our approach extends the possibility to receive points for the final score with practical programming exercises on real hardware. It allows the student to do embedded programming by communicating over GPIO pins to control LEDs and measure sensor values. Additionally, they can visualize values on an embedded display using web technologies, which are an essential part of embedded and smart home devices to communicate with common APIs. Students have the opportunity to solve all tasks within the online remote lab and at home on the same kind of hardware. The evaluation of this MOOCs indicates the interesting design for students to learn an engineering technique with new technology approaches in an appropriate, modern, supporting and motivating way of teaching. KW - E-Learning KW - MOOC Remote Lab KW - Distance Learning KW - Embedded Programming KW - Smart Home Education Y1 - 2018 SN - 978-1-5386-2957-4 U6 - https://doi.org/10.1109/EDUCON.2018.8363353 SN - 2165-9567 SP - 1104 EP - 1111 PB - IEEE CY - New York ER - TY - GEN A1 - Malchow, Martin A1 - Bauer, Matthias A1 - Meinel, Christoph T1 - Enhance Learning in a Video Lecture Archive with Annotations T2 - Proceedings of OF 2018 IEEE Global Engineering Education Conference (EDUCON) N2 - When students watch learning videos online, they usually need to watch several hours of video content. In the end, not every minute of a video is relevant for the exam. Additionally, students need to add notes to clarify issues of a lecture. There are several possibilities to enhance the metadata of a video, e.g. a typical way to add user-specific information to an online video is a comment functionality, which allows users to share their thoughts and questions with the public. In contrast to common video material which can be found online, lecture videos are used for exam preparation. Due to this difference, the idea comes up to annotate lecture videos with markers and personal notes for a better understanding of the taught content. Especially, students learning for an exam use their notes to refresh their memories. To ease this learning method with lecture videos, we introduce the annotation feature in our video lecture archive. This functionality supports the students with keeping track of their thoughts by providing an intuitive interface to easily add, modify or remove their ideas. This annotation function is integrated in the video player. Hence, scrolling to a separate annotation area on the website is not necessary. Furthermore, the annotated notes can be exported together with the slide content to a PDF file, which can then be printed easily. Lecture video annotations support and motivate students to learn and watch videos from an E-Learning video archive. KW - E-Learning KW - Lecture Video Archive KW - Video annotations KW - E-Learning exam preparation Y1 - 2018 SN - 978-1-5386-2957-4 SN - 2165-9567 SP - 849 EP - 856 PB - IEEE CY - New York ER - TY - JOUR A1 - Thienen, Julia von A1 - Clancey, William J. A1 - Corazza, Giovanni Emanuele A1 - Meinel, Christoph T1 - Theoretical foundations of design thinking creative thinking theories JF - Design Thinking Research: Making Distinctions: Collaboration versus Cooperation N2 - Design thinking is acknowledged as a thriving innovation practice plus something more, something in the line of a deep understanding of innovation processes. At the same time, quite how and why design thinking works-in scientific terms-appeared an open question at first. Over recent years, empirical research has achieved great progress in illuminating the principles that make design thinking successful. Lately, the community began to explore an additional approach. Rather than setting up novel studies, investigations into the history of design thinking hold the promise of adding systematically to our comprehension of basic principles. This chapter makes a start in revisiting design thinking history with the aim of explicating scientific understandings that inform design thinking practices today. It offers a summary of creative thinking theories that were brought to Stanford Engineering in the 1950s by John E. Arnold. Y1 - 2018 SN - 978-3-319-60967-6 SN - 978-3-319-60966-9 U6 - https://doi.org/10.1007/978-3-319-60967-6_2 SP - 13 EP - 40 PB - Springer CY - New York ER - TY - GEN A1 - Torkura, Kennedy A. A1 - Sukmana, Muhammad Ihsan Haikal A1 - Meinig, Michael A1 - Kayem, Anne V. D. M. A1 - Cheng, Feng A1 - Meinel, Christoph A1 - Graupner, Hendrik T1 - Securing cloud storage brokerage systems through threat models T2 - Proceedings IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA) N2 - Cloud storage brokerage is an abstraction aimed at providing value-added services. However, Cloud Service Brokers are challenged by several security issues including enlarged attack surfaces due to integration of disparate components and API interoperability issues. Therefore, appropriate security risk assessment methods are required to identify and evaluate these security issues, and examine the efficiency of countermeasures. A possible approach for satisfying these requirements is employment of threat modeling concepts, which have been successfully applied in traditional paradigms. In this work, we employ threat models including attack trees, attack graphs and Data Flow Diagrams against a Cloud Service Broker (CloudRAID) and analyze these security threats and risks. Furthermore, we propose an innovative technique for combining Common Vulnerability Scoring System (CVSS) and Common Configuration Scoring System (CCSS) base scores in probabilistic attack graphs to cater for configuration-based vulnerabilities which are typically leveraged for attacking cloud storage systems. This approach is necessary since existing schemes do not provide sufficient security metrics, which are imperatives for comprehensive risk assessments. We demonstrate the efficiency of our proposal by devising CCSS base scores for two common attacks against cloud storage: Cloud Storage Enumeration Attack and Cloud Storage Exploitation Attack. These metrics are then used in Attack Graph Metric-based risk assessment. Our experimental evaluation shows that our approach caters for the aforementioned gaps and provides efficient security hardening options. Therefore, our proposals can be employed to improve cloud security. KW - Cloud-Security KW - Threat Models KW - Security Metrics KW - Security Risk Assessment KW - Secure Configuration Y1 - 2018 SN - 978-1-5386-2195-0 U6 - https://doi.org/10.1109/AINA.2018.00114 SN - 1550-445X SP - 759 EP - 768 PB - IEEE CY - New York ER - TY - GEN A1 - Krentz, Konrad-Felix A1 - Meinel, Christoph A1 - Graupner, Hendrik T1 - More Lightweight, yet Stronger 802.15.4 Security Through an Intra-layer Optimization T2 - Foundations and Practice of Security N2 - 802.15.4 security protects against the replay, injection, and eavesdropping of 802.15.4 frames. A core concept of 802.15.4 security is the use of frame counters for both nonce generation and anti-replay protection. While being functional, frame counters (i) cause an increased energy consumption as they incur a per-frame overhead of 4 bytes and (ii) only provide sequential freshness. The Last Bits (LB) optimization does reduce the per-frame overhead of frame counters, yet at the cost of an increased RAM consumption and occasional energy-and time-consuming resynchronization actions. Alternatively, the timeslotted channel hopping (TSCH) media access control (MAC) protocol of 802.15.4 avoids the drawbacks of frame counters by replacing them with timeslot indices, but findings of Yang et al. question the security of TSCH in general. In this paper, we assume the use of ContikiMAC, which is a popular asynchronous MAC protocol for 802.15.4 networks. Under this assumption, we propose an Intra-Layer Optimization for 802.15.4 Security (ILOS), which intertwines 802.15.4 security and ContikiMAC. In effect, ILOS reduces the security-related per-frame overhead even more than the LB optimization, as well as achieves strong freshness. Furthermore, unlike the LB optimization, ILOS neither incurs an increased RAM consumption nor requires resynchronization actions. Beyond that, ILOS integrates with and advances other security supplements to ContikiMAC. We implemented ILOS using OpenMotes and the Contiki operating system. Y1 - 2018 SN - 978-3-319-75650-9 SN - 978-3-319-75649-3 U6 - https://doi.org/10.1007/978-3-319-75650-9_12 SN - 0302-9743 SN - 1611-3349 VL - 10723 SP - 173 EP - 188 PB - Springer CY - Cham ER - TY - GEN A1 - Shaabani, Nuhad A1 - Meinel, Christoph T1 - Improving the efficiency of inclusion dependency detection T2 - Proceedings of the 27th ACM International Conference on Information and Knowledge Management N2 - The detection of all inclusion dependencies (INDs) in an unknown dataset is at the core of any data profiling effort. Apart from the discovery of foreign key relationships, INDs can help perform data integration, integrity checking, schema (re-)design, and query optimization. With the advent of Big Data, the demand increases for efficient INDs discovery algorithms that can scale with the input data size. To this end, we propose S-INDD++ as a scalable system for detecting unary INDs in large datasets. S-INDD++ applies a new stepwise partitioning technique that helps discard a large number of attributes in early phases of the detection by processing the first partitions of smaller sizes. S-INDD++ also extends the concept of the attribute clustering to decide which attributes to be discarded based on the clustering result of each partition. Moreover, in contrast to the state-of-the-art, S-INDD++ does not require the partition to fit into the main memory-which is a highly appreciable property in the face of the ever growing datasets. We conducted an exhaustive evaluation of S-INDD++ by applying it to large datasets with thousands attributes and more than 266 million tuples. The results show the high superiority of S-INDD++ over the state-of-the-art. S-INDD++ reduced up to 50 % of the runtime in comparison with BINDER, and up to 98 % in comparison with S-INDD. KW - Algorithms KW - Data partitioning KW - Data profiling KW - Data mining Y1 - 2018 SN - 978-1-4503-6014-2 U6 - https://doi.org/10.1145/3269206.3271724 SP - 207 EP - 216 PB - Association for Computing Machinery CY - New York ER - TY - GEN A1 - Elsaid, Mohamed Esam A1 - Shawish, Ahmed A1 - Meinel, Christoph T1 - Enhanced cost analysis of multiple virtual machines live migration in VMware environments T2 - 2018 IEEE 8th International Symposium on Cloud and Service Computing (SC2) N2 - Live migration is an important feature in modern software-defined datacenters and cloud computing environments. Dynamic resource management, load balance, power saving and fault tolerance are all dependent on the live migration feature. Despite the importance of live migration, the cost of live migration cannot be ignored and may result in service availability degradation. Live migration cost includes the migration time, downtime, CPU overhead, network and power consumption. There are many research articles that discuss the problem of live migration cost with different scopes like analyzing the cost and relate it to the parameters that control it, proposing new migration algorithms that minimize the cost and also predicting the migration cost. For the best of our knowledge, most of the papers that discuss the migration cost problem focus on open source hypervisors. For the research articles focus on VMware environments, none of the published articles proposed migration time, network overhead and power consumption modeling for single and multiple VMs live migration. In this paper, we propose empirical models for the live migration time, network overhead and power consumption for single and multiple VMs migration. The proposed models are obtained using a VMware based testbed. Y1 - 2018 SN - 978-1-7281-0236-8 U6 - https://doi.org/10.1109/SC2.2018.00010 SP - 16 EP - 23 PB - IEEE CY - New York ER - TY - JOUR A1 - Ambassa, Pacome L. A1 - Kayem, Anne Voluntas dei Massah A1 - Wolthusen, Stephen D. A1 - Meinel, Christoph T1 - Inferring private user behaviour based on information leakage JF - Smart Micro-Grid Systems Security and Privacy N2 - In rural/remote areas, resource constrained smart micro-grid (RCSMG) architectures can provide a cost-effective power supply alternative in cases when connectivity to the national power grid is impeded by factors such as load shedding. RCSMG architectures can be designed to handle communications over a distributed lossy network in order to minimise operation costs. However, due to the unreliable nature of lossy networks communication data can be distorted by noise additions that alter the veracity of the data. In this chapter, we consider cases in which an adversary who is internal to the RCSMG, deliberately distorts communicated data to gain an unfair advantage over the RCSMG’s users. The adversary’s goal is to mask malicious data manipulations as distortions due to additive noise due to communication channel unreliability. Distinguishing malicious data distortions from benign distortions is important in ensuring trustworthiness of the RCSMG. Perturbation data anonymisation algorithms can be used to alter transmitted data to ensure that adversarial manipulation of the data reveals no information that the adversary can take advantage of. However, because existing data perturbation anonymisation algorithms operate by using additive noise to anonymise data, using these algorithms in the RCSMG context is challenging. This is due to the fact that distinguishing benign noise additions from malicious noise additions is a difficult problem. In this chapter, we present a brief survey of cases of privacy violations due to inferences drawn from observed power consumption patterns in RCSMGs centred on inference, and propose a method of mitigating these risks. The lesson here is that while RCSMGs give users more control over power management and distribution, good anonymisation is essential to protecting personal information on RCSMGs. KW - Approximation algorithms KW - Electrical products KW - Home appliances KW - Load modeling KW - Monitoring KW - Power demand KW - Wireless sensor networks KW - Distributed snapshot algorithm KW - Micro-grid networks KW - Power consumption characterization KW - Sensor networks Y1 - 2018 SN - 978-3-319-91427-5 SN - 978-3-319-91426-8 U6 - https://doi.org/10.1007/978-3-319-91427-5_7 VL - 71 SP - 145 EP - 159 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Kayem, Anne Voluntas dei Massah A1 - Meinel, Christoph A1 - Wolthusen, Stephen D. T1 - A resilient smart micro-grid architecture for resource constrained environments JF - Smart Micro-Grid Systems Security and Privacy N2 - Resource constrained smart micro-grid architectures describe a class of smart micro-grid architectures that handle communications operations over a lossy network and depend on a distributed collection of power generation and storage units. Disadvantaged communities with no or intermittent access to national power networks can benefit from such a micro-grid model by using low cost communication devices to coordinate the power generation, consumption, and storage. Furthermore, this solution is both cost-effective and environmentally-friendly. One model for such micro-grids, is for users to agree to coordinate a power sharing scheme in which individual generator owners sell excess unused power to users wanting access to power. Since the micro-grid relies on distributed renewable energy generation sources which are variable and only partly predictable, coordinating micro-grid operations with distributed algorithms is necessity for grid stability. Grid stability is crucial in retaining user trust in the dependability of the micro-grid, and user participation in the power sharing scheme, because user withdrawals can cause the grid to breakdown which is undesirable. In this chapter, we present a distributed architecture for fair power distribution and billing on microgrids. The architecture is designed to operate efficiently over a lossy communication network, which is an advantage for disadvantaged communities. We build on the architecture to discuss grid coordination notably how tasks such as metering, power resource allocation, forecasting, and scheduling can be handled. All four tasks are managed by a feedback control loop that monitors the performance and behaviour of the micro-grid, and based on historical data makes decisions to ensure the smooth operation of the grid. Finally, since lossy networks are undependable, differentiating system failures from adversarial manipulations is an important consideration for grid stability. We therefore provide a characterisation of potential adversarial models and discuss possible mitigation measures. KW - Resource constrained smart micro-grids KW - Architectures KW - Disadvantaged communities KW - Energy KW - Grid stability KW - Forecasting KW - Feedback control loop Y1 - 2018 SN - 978-3-319-91427-5 SN - 978-3-319-91426-8 U6 - https://doi.org/10.1007/978-3-319-91427-5_5 VL - 71 SP - 71 EP - 101 PB - Springer CY - Dordrecht ER - TY - GEN A1 - Kayem, Anne Voluntas dei Massah A1 - Meinel, Christoph A1 - Wolthusen, Stephen D. T1 - Smart micro-grid systems security and privacy preface T2 - Smart micro-grid systems security and privacy N2 - Studies indicate that reliable access to power is an important enabler for economic growth. To this end, modern energy management systems have seen a shift from reliance on time-consuming manual procedures , to highly automated management , with current energy provisioning systems being run as cyber-physical systems . Operating energy grids as a cyber-physical system offers the advantage of increased reliability and dependability , but also raises issues of security and privacy. In this chapter, we provide an overview of the contents of this book showing the interrelation between the topics of the chapters in terms of smart energy provisioning. We begin by discussing the concept of smart-grids in general, proceeding to narrow our focus to smart micro-grids in particular. Lossy networks also provide an interesting framework for enabling the implementation of smart micro-grids in remote/rural areas, where deploying standard smart grids is economically and structurally infeasible. To this end, we consider an architectural design for a smart micro-grid suited to low-processing capable devices. We model malicious behaviour, and propose mitigation measures based properties to distinguish normal from malicious behaviour . Y1 - 2018 SN - 978-3-319-91427-5 SN - 978-3-319-91426-8 U6 - https://doi.org/10.1007/978-3-319-91427-5_1 VL - 71 SP - VII EP - VIII PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Kayem, Anne Voluntas dei Massah A1 - Wolthusen, Stephen D. A1 - Meinel, Christoph T1 - Power Systems BT - a matter of security and privacy JF - Smart Micro-Grid Systems Security and Privacy N2 - Studies indicate that reliable access to power is an important enabler for economic growth. To this end, modern energy management systems have seen a shift from reliance on time-consuming manual procedures, to highly automated management, with current energy provisioning systems being run as cyber-physical systems. Operating energy grids as a cyber-physical system offers the advantage of increased reliability and dependability, but also raises issues of security and privacy. In this chapter, we provide an overview of the contents of this book showing the interrelation between the topics of the chapters in terms of smart energy provisioning. We begin by discussing the concept of smart-grids in general, proceeding to narrow our focus to smart micro-grids in particular. Lossy networks also provide an interesting framework for enabling the implementation of smart micro-grids in remote/rural areas, where deploying standard smart grids is economically and structurally infeasible. To this end, we consider an architectural design for a smart micro-grid suited to low-processing capable devices. We model malicious behaviour, and propose mitigation measures based properties to distinguish normal from malicious behaviour. KW - Lossy networks KW - Low-processing capable devices KW - Smart micro-grids KW - Security KW - Privacy KW - Energy Y1 - 2018 SN - 978-3-319-91427-5 SN - 978-3-319-91426-8 U6 - https://doi.org/10.1007/978-3-319-91427-5_1 VL - 71 SP - 1 EP - 8 PB - Springer CY - Dordrecht ER - TY - GEN A1 - Torkura, Kennedy A. A1 - Sukmana, Muhammad Ihsan Haikal A1 - Kayem, Anne V. D. M. A1 - Cheng, Feng A1 - Meinel, Christoph T1 - A cyber risk based moving target defense mechanism for microservice architectures T2 - IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom) N2 - Microservice Architectures (MSA) structure applications as a collection of loosely coupled services that implement business capabilities. The key advantages of MSA include inherent support for continuous deployment of large complex applications, agility and enhanced productivity. However, studies indicate that most MSA are homogeneous, and introduce shared vulnerabilites, thus vulnerable to multi-step attacks, which are economics-of-scale incentives to attackers. In this paper, we address the issue of shared vulnerabilities in microservices with a novel solution based on the concept of Moving Target Defenses (MTD). Our mechanism works by performing risk analysis against microservices to detect and prioritize vulnerabilities. Thereafter, security risk-oriented software diversification is employed, guided by a defined diversification index. The diversification is performed at runtime, leveraging both model and template based automatic code generation techniques to automatically transform programming languages and container images of the microservices. Consequently, the microservices attack surfaces are altered thereby introducing uncertainty for attackers while reducing the attackability of the microservices. Our experiments demonstrate the efficiency of our solution, with an average success rate of over 70% attack surface randomization. KW - Security Risk Assessment KW - Security Metrics KW - Moving Target Defense KW - Microservices Security KW - Application Container Security Y1 - 2018 SN - 978-1-7281-1141-4 U6 - https://doi.org/10.1109/BDCloud.2018.00137 SN - 2158-9178 SP - 932 EP - 939 PB - Institute of Electrical and Electronics Engineers CY - Los Alamitos ER - TY - GEN A1 - Sukmana, Muhammad Ihsan Haikal A1 - Torkura, Kennedy A. A1 - Cheng, Feng A1 - Meinel, Christoph A1 - Graupner, Hendrik T1 - Unified logging system for monitoring multiple cloud storage providers in cloud storage broker T2 - 32ND International Conference on Information Networking (ICOIN) N2 - With the increasing demand for personal and enterprise data storage service, Cloud Storage Broker (CSB) provides cloud storage service using multiple Cloud Service Providers (CSPs) with guaranteed Quality of Service (QoS), such as data availability and security. However monitoring cloud storage usage in multiple CSPs has become a challenge for CSB due to lack of standardized logging format for cloud services that causes each CSP to implement its own format. In this paper we propose a unified logging system that can be used by CSB to monitor cloud storage usage across multiple CSPs. We gather cloud storage log files from three different CSPs and normalise these into our proposed log format that can be used for further analysis process. We show that our work enables a coherent view suitable for data navigation, monitoring, and analytics. KW - Unified logging system KW - Cloud Service Provider KW - cloud monitoring KW - data integration KW - security analytics Y1 - 2018 SN - 978-1-5386-2290-2 U6 - https://doi.org/10.1109/ICOIN.2018.8343081 SP - 44 EP - 49 PB - IEEE CY - New York ER - TY - GEN A1 - Torkura, Kennedy A. A1 - Sukmana, Muhammad Ihsan Haikal A1 - Strauss, Tim A1 - Graupner, Hendrik A1 - Cheng, Feng A1 - Meinel, Christoph T1 - CSBAuditor BT - proactive security risk analysis for cloud storage broker systems T2 - 17th International Symposium on Network Computing and Applications (NCA) N2 - Cloud Storage Brokers (CSB) provide seamless and concurrent access to multiple Cloud Storage Services (CSS) while abstracting cloud complexities from end-users. However, this multi-cloud strategy faces several security challenges including enlarged attack surfaces, malicious insider threats, security complexities due to integration of disparate components and API interoperability issues. Novel security approaches are imperative to tackle these security issues. Therefore, this paper proposes CSBAuditor, a novel cloud security system that continuously audits CSB resources, to detect malicious activities and unauthorized changes e.g. bucket policy misconfigurations, and remediates these anomalies. The cloud state is maintained via a continuous snapshotting mechanism thereby ensuring fault tolerance. We adopt the principles of chaos engineering by integrating Broker Monkey, a component that continuously injects failure into our reference CSB system, Cloud RAID. Hence, CSBAuditor is continuously tested for efficiency i.e. its ability to detect the changes injected by Broker Monkey. CSBAuditor employs security metrics for risk analysis by computing severity scores for detected vulnerabilities using the Common Configuration Scoring System, thereby overcoming the limitation of insufficient security metrics in existing cloud auditing schemes. CSBAuditor has been tested using various strategies including chaos engineering failure injection strategies. Our experimental evaluation validates the efficiency of our approach against the aforementioned security issues with a detection and recovery rate of over 96 %. KW - Cloud-Security KW - Cloud Audit KW - Security Metrics KW - Security Risk Assessment KW - Secure Configuration Y1 - 2018 SN - 978-1-5386-7659-2 U6 - https://doi.org/10.1109/NCA.2018.8548329 PB - IEEE CY - New York ER - TY - GEN A1 - Bin Tareaf, Raad A1 - Berger, Philipp A1 - Hennig, Patrick A1 - Meinel, Christoph T1 - ASEDS BT - Towards automatic social emotion detection system using facebook reactions T2 - IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS)) N2 - The Massive adoption of social media has provided new ways for individuals to express their opinion and emotion online. In 2016, Facebook introduced a new reactions feature that allows users to express their psychological emotions regarding published contents using so-called Facebook reactions. In this paper, a framework for predicting the distribution of Facebook post reactions is presented. For this purpose, we collected an enormous amount of Facebook posts associated with their reactions labels using the proposed scalable Facebook crawler. The training process utilizes 3 million labeled posts for more than 64,000 unique Facebook pages from diverse categories. The evaluation on standard benchmarks using the proposed features shows promising results compared to previous research. The final model is able to predict the reaction distribution on Facebook posts with a recall score of 0.90 for "Joy" emotion. KW - Emotion Mining KW - Psychological Emotions KW - Machine Learning KW - Social Media Analysis KW - Natural Language Processing Y1 - 2018 SN - 978-1-5386-6614-2 U6 - https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00143 SP - 860 EP - 866 PB - IEEE CY - New York ER - TY - GEN A1 - Staubitz, Thomas A1 - Meinel, Christoph T1 - Collaborative Learning in MOOCs - Approaches and Experiments T2 - 2018 IEEE Frontiers in Education (FIE) Conference N2 - This Research-to-Practice paper examines the practical application of various forms of collaborative learning in MOOCs. Since 2012, about 60 MOOCs in the wider context of Information Technology and Computer Science have been conducted on our self-developed MOOC platform. The platform is also used by several customers, who either run their own platform instances or use our white label platform. We, as well as some of our partners, have experimented with different approaches in collaborative learning in these courses. Based on the results of early experiments, surveys amongst our participants, and requests by our business partners we have integrated several options to offer forms of collaborative learning to the system. The results of our experiments are directly fed back to the platform development, allowing to fine tune existing and to add new tools where necessary. In the paper at hand, we discuss the benefits and disadvantages of decisions in the design of a MOOC with regard to the various forms of collaborative learning. While the focus of the paper at hand is on forms of large group collaboration, two types of small group collaboration on our platforms are briefly introduced. KW - MOOC KW - Collaborative learning KW - Peer assessment KW - Team based assignment KW - Teamwork Y1 - 2018 SN - 978-1-5386-1174-6 SN - 0190-5848 PB - IEEE CY - New York ER - TY - GEN A1 - Bartz, Christian A1 - Yang, Haojin A1 - Meinel, Christoph T1 - SEE: Towards semi-supervised end-to-end scene text recognition T2 - Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, Thirtieth Innovative Applications of Artificial Intelligence Conference, Eight Symposium on Educational Advances in Artificial Intelligence N2 - Detecting and recognizing text in natural scene images is a challenging, yet not completely solved task. In recent years several new systems that try to solve at least one of the two sub-tasks (text detection and text recognition) have been proposed. In this paper we present SEE, a step towards semi-supervised neural networks for scene text detection and recognition, that can be optimized end-to-end. Most existing works consist of multiple deep neural networks and several pre-processing steps. In contrast to this, we propose to use a single deep neural network, that learns to detect and recognize text from natural images, in a semi-supervised way. SEE is a network that integrates and jointly learns a spatial transformer network, which can learn to detect text regions in an image, and a text recognition network that takes the identified text regions and recognizes their textual content. We introduce the idea behind our novel approach and show its feasibility, by performing a range of experiments on standard benchmark datasets, where we achieve competitive results. Y1 - 2018 SN - 978-1-57735-800-8 VL - 10 SP - 6674 EP - 6681 PB - ASSOC Association for the Advancement of Artificial Intelligence CY - Palo Alto ER - TY - GEN A1 - Klieme, Eric A1 - Tietz, Christian A1 - Meinel, Christoph T1 - Beware of SMOMBIES BT - Verification of Users based on Activities while Walking T2 - The 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (IEEE TrustCom 2018)/the 12th IEEE International Conference on Big Data Science and Engineering (IEEE BigDataSE 2018) N2 - Several research evaluated the user's style of walking for the verification of a claimed identity and showed high authentication accuracies in many settings. In this paper we present a system that successfully verifies a user's identity based on many real world smartphone placements and yet not regarded interactions while walking. Our contribution is the distinction of all considered activities into three distinct subsets and a specific one-class Support Vector Machine per subset. Using sensor data of 30 participants collected in a semi-supervised study approach, we prove that unsupervised verification is possible with very low false-acceptance and false-rejection rates. We furthermore show that these subsets can be distinguished with a high accuracy and demonstrate that this system can be deployed on off-the-shelf smartphones. KW - gait KW - authentication KW - smartphone KW - activities KW - verification KW - behavioral KW - continuous Y1 - 2018 SN - 978-1-5386-4387-7 SN - 978-1-5386-4389-1 U6 - https://doi.org/10.1109/TrustCom/BigDataSE.2018.00096 SN - 2324-9013 SP - 651 EP - 660 PB - IEEE CY - New York ER - TY - JOUR A1 - Jaeger, David A1 - Graupner, Hendrik A1 - Pelchen, Chris A1 - Cheng, Feng A1 - Meinel, Christoph T1 - Fast Automated Processing and Evaluation of Identity Leaks JF - International journal of parallel programming N2 - The relevance of identity data leaks on the Internet is more present than ever. Almost every week we read about leakage of databases with more than a million users in the news. Smaller but not less dangerous leaks happen even multiple times a day. The public availability of such leaked data is a major threat to the victims, but also creates the opportunity to learn not only about security of service providers but also the behavior of users when choosing passwords. Our goal is to analyze this data and generate knowledge that can be used to increase security awareness and security, respectively. This paper presents a novel approach to the processing and analysis of a vast majority of bigger and smaller leaks. We evolved from a semi-manual to a fully automated process that requires a minimum of human interaction. Our contribution is the concept and a prototype implementation of a leak processing workflow that includes the extraction of digital identities from structured and unstructured leak-files, the identification of hash routines and a quality control to ensure leak authenticity. By making use of parallel and distributed programming, we are able to make leaks almost immediately available for analysis and notification after they have been published. Based on the data collected, this paper reveals how easy it is for criminals to collect lots of passwords, which are plain text or only weakly hashed. We publish those results and hope to increase not only security awareness of Internet users but also security on a technical level on the service provider side. KW - Identity leak KW - Data breach KW - Automated parsing KW - Parallel processing Y1 - 2018 U6 - https://doi.org/10.1007/s10766-016-0478-6 SN - 0885-7458 SN - 1573-7640 VL - 46 IS - 2 SP - 441 EP - 470 PB - Springer CY - New York ER - TY - JOUR A1 - Wang, Cheng A1 - Yang, Haojin A1 - Meinel, Christoph T1 - Image Captioning with Deep Bidirectional LSTMs and Multi-Task Learning JF - ACM transactions on multimedia computing, communications, and applications N2 - Generating a novel and descriptive caption of an image is drawing increasing interests in computer vision, natural language processing, and multimedia communities. In this work, we propose an end-to-end trainable deep bidirectional LSTM (Bi-LSTM (Long Short-Term Memory)) model to address the problem. By combining a deep convolutional neural network (CNN) and two separate LSTM networks, our model is capable of learning long-term visual-language interactions by making use of history and future context information at high-level semantic space. We also explore deep multimodal bidirectional models, in which we increase the depth of nonlinearity transition in different ways to learn hierarchical visual-language embeddings. Data augmentation techniques such as multi-crop, multi-scale, and vertical mirror are proposed to prevent over-fitting in training deep models. To understand how our models "translate" image to sentence, we visualize and qualitatively analyze the evolution of Bi-LSTM internal states over time. The effectiveness and generality of proposed models are evaluated on four benchmark datasets: Flickr8K, Flickr30K, MSCOCO, and Pascal1K datasets. We demonstrate that Bi-LSTM models achieve highly competitive performance on both caption generation and image-sentence retrieval even without integrating an additional mechanism (e.g., object detection, attention model). Our experiments also prove that multi-task learning is beneficial to increase model generality and gain performance. We also demonstrate the performance of transfer learning of the Bi-LSTM model significantly outperforms previous methods on the Pascal1K dataset. KW - Deep learning KW - LSTM KW - multimodal representations KW - image captioning KW - mutli-task learning Y1 - 2018 U6 - https://doi.org/10.1145/3115432 SN - 1551-6857 SN - 1551-6865 VL - 14 IS - 2 PB - Association for Computing Machinery CY - New York ER - TY - JOUR A1 - Krentz, Konrad-Felix A1 - Meinel, Christoph T1 - Denial-of-sleep defenses for IEEE 802.15.4 coordinated sampled listening (CSL) JF - Computer Networks N2 - Coordinated sampled listening (CSL) is a standardized medium access control protocol for IEEE 80215.4 networks. Unfortunately, CSL comes without any protection against so-called denial-of-sleep attacks. Such attacks deprive energy-constrained devices of entering low-power sleep modes, thereby draining their charge. Repercussions of denial-of-sleep attacks include long outages, violated quality-of-service guarantees, and reduced customer satisfaction. However, while CSL has no built-in denial-of-sleep defenses, there already exist denial-of-sleep defenses for a predecessor of CSL, namely ContikiMAC. In this paper, we make two main contributions. First, motivated by the fact that CSL has many advantages over ContikiMAC, we tailor the existing denial-of-sleep defenses for ContikiMAC to CSL. Second, we propose several security enhancements to these existing denial-of-sleep defenses. In effect, our denial-of-sleep defenses for CSL mitigate denial-of-sleep attacks significantly better, as well as protect against a larger range of denial-of-sleep attacks than the existing denial-of-sleep defenses for ContikiMAC. We show the soundness of our denial-of-sleep defenses for CSL both analytically, as well as empirically using a whole new implementation of CSL. (C) 2018 Elsevier B.V. All rights reserved. KW - Internet of things KW - Link layer security KW - MAC security KW - Denial of sleep Y1 - 2018 U6 - https://doi.org/10.1016/j.comnet.2018.10.021 SN - 1389-1286 SN - 1872-7069 VL - 148 SP - 60 EP - 71 PB - Elsevier CY - Amsterdam ER - TY - BOOK A1 - Meinel, Christoph A1 - Gayvoronskaya, Tatiana A1 - Schnjakin, Maxim T1 - Blockchain BT - hype or innovation N2 - The term blockchain has recently become a buzzword, but only few know what exactly lies behind this approach. According to a survey, issued in the first quarter of 2017, the term is only known by 35 percent of German medium-sized enterprise representatives. However, the blockchain technology is very interesting for the mass media because of its rapid development and global capturing of different markets. For example, many see blockchain technology either as an all-purpose weapon— which only a few have access to—or as a hacker technology for secret deals in the darknet. The innovation of blockchain technology is found in its successful combination of already existing approaches: such as decentralized networks, cryptography, and consensus models. This innovative concept makes it possible to exchange values in a decentralized system. At the same time, there is no requirement for trust between its nodes (e.g. users). With this study the Hasso Plattner Institute would like to help readers form their own opinion about blockchain technology, and to distinguish between truly innovative properties and hype. The authors of the present study analyze the positive and negative properties of the blockchain architecture and suggest possible solutions, which can contribute to the efficient use of the technology. We recommend that every company define a clear target for the intended application, which is achievable with a reasonable cost-benefit ration, before deciding on this technology. Both the possibilities and the limitations of blockchain technology need to be considered. The relevant steps that must be taken in this respect are summarized /summed up for the reader in this study. Furthermore, this study elaborates on urgent problems such as the scalability of the blockchain, appropriate consensus algorithm and security, including various types of possible attacks and their countermeasures. New blockchains, for example, run the risk of reducing security, as changes to existing technology can lead to lacks in the security and failures. After discussing the innovative properties and problems of the blockchain technology, its implementation is discussed. There are a lot of implementation opportunities for companies available who are interested in the blockchain realization. The numerous applications have either their own blockchain as a basis or use existing and widespread blockchain systems. Various consortia and projects offer "blockchain-as-a-serviceänd help other companies to develop, test and deploy their own applications. This study gives a detailed overview of diverse relevant applications and projects in the field of blockchain technology. As this technology is still a relatively young and fast developing approach, it still lacks uniform standards to allow the cooperation of different systems and to which all developers can adhere. Currently, developers are orienting themselves to Bitcoin, Ethereum and Hyperledger systems, which serve as the basis for many other blockchain applications. The goal is to give readers a clear and comprehensive overview of blockchain technology and its capabilities. N2 - Der Begriff Blockchain ist in letzter Zeit zu einem Schlagwort geworden, aber nur wenige wissen, was sich genau dahinter verbirgt. Laut einer Umfrage, die im ersten Quartal 2017 veröffentlicht wurde, ist der Begriff nur bei 35 Prozent der deutschen Mittelständler bekannt. Dabei ist die Blockchain-Technologie durch ihre rasante Entwicklung und die globale Eroberung unterschiedlicher Märkte für Massenmedien sehr interessant. So sehen viele die Blockchain-Technologie entweder als eine Allzweckwaffe, zu der aber nur wenige einen Zugang haben, oder als eine Hacker-Technologie für geheime Geschäfte im Darknet. Dabei liegt die Innovation der Blockchain-Technologie in ihrer erfolgreichen Zusammensetzung bereits vorhandener Ansätze: dezentrale Netzwerke, Kryptographie, Konsensfindungsmodelle. Durch das innovative Konzept wird ein Werte-Austausch in einem dezentralen System möglich. Dabei wird kein Vertrauen zwischen dessen Knoten (z.B. Nutzer) vorausgesetzt. Mit dieser Studie möchte das Hasso-Plattner-Institut den Lesern helfen, ihren eigenen Standpunkt zur Blockchain-Technologie zu finden und dabei dazwischen unterscheiden zu können, welche Eigenschaften wirklich innovativ und welche nichts weiter als ein Hype sind. Die Autoren der vorliegenden Arbeit analysieren positive und negative Eigenschaften, welche die Blockchain-Architektur prägen, und stellen mögliche Anpassungs- und Lösungsvorschläge vor, die zu einem effizienten Einsatz der Technologie beitragen können. Jedem Unternehmen, bevor es sich für diese Technologie entscheidet, wird dabei empfohlen, für den geplanten Anwendungszweck zunächst ein klares Ziel zu definieren, das mit einem angemessenen Kosten-Nutzen-Verhältnis angestrebt werden kann. Dabei sind sowohl die Möglichkeiten als auch die Grenzen der Blockchain-Technologie zu beachten. Die relevanten Schritte, die es in diesem Zusammenhang zu beachten gilt, fasst die Studie für die Leser übersichtlich zusammen. Es wird ebenso auf akute Fragestellungen wie Skalierbarkeit der Blockchain, geeigneter Konsensalgorithmus und Sicherheit eingegangen, darunter verschiedene Arten möglicher Angriffe und die entsprechenden Gegenmaßnahmen zu deren Abwehr. Neue Blockchains etwa laufen Gefahr, geringere Sicherheit zu bieten, da Änderungen an der bereits bestehenden Technologie zu Schutzlücken und Mängeln führen können. Nach Diskussion der innovativen Eigenschaften und Probleme der Blockchain-Technologie wird auf ihre Umsetzung eingegangen. Interessierten Unternehmen stehen viele Umsetzungsmöglichkeiten zur Verfügung. Die zahlreichen Anwendungen haben entweder eine eigene Blockchain als Grundlage oder nutzen bereits bestehende und weitverbreitete Blockchain-Systeme. Zahlreiche Konsortien und Projekte bieten „Blockchain-as-a-Service“ an und unterstützen andere Unternehmen beim Entwickeln, Testen und Bereitstellen von Anwendungen. Die Studie gibt einen detaillierten Überblick über zahlreiche relevante Einsatzbereiche und Projekte im Bereich der Blockchain-Technologie. Dadurch, dass sie noch relativ jung ist und sich schnell entwickelt, fehlen ihr noch einheitliche Standards, die Zusammenarbeit der verschiedenen Systeme erlauben und an die sich alle Entwickler halten können. Aktuell orientieren sich Entwickler an Bitcoin-, Ethereum- und Hyperledger-Systeme, diese dienen als Grundlage für viele weitere Blockchain-Anwendungen. Ziel ist, den Lesern einen klaren und umfassenden Überblick über die Blockchain-Technologie und deren Möglichkeiten zu vermitteln. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 124 KW - ACINQ KW - altchain KW - alternative chain KW - ASIC KW - atomic swap KW - Australian securities exchange KW - bidirectional payment channels KW - Bitcoin Core KW - bitcoins KW - BitShares KW - Blockchain Auth KW - blockchain consortium KW - cross-chain KW - inter-chain KW - blocks KW - blockchain KW - Blockstack ID KW - Blockstack KW - blumix platform KW - BTC KW - Byzantine Agreement KW - chain KW - cloud KW - Colored Coins KW - confirmation period KW - contest period KW - DAO KW - Delegated Proof-of-Stake KW - decentralized autonomous organization KW - Distributed Proof-of-Research KW - double hashing KW - DPoS KW - ECDSA KW - Eris KW - Ether KW - Ethereum KW - E-Wallet KW - Federated Byzantine Agreement KW - federated voting KW - FollowMyVote KW - Fork KW - Gridcoin KW - Hard Fork KW - Hashed Timelock Contracts KW - hashrate KW - identity management KW - smart contracts KW - Internet of Things KW - IoT KW - BCCC KW - Japanese Blockchain Consortium KW - consensus algorithm KW - consensus protocol KW - ledger assets KW - Lightning Network KW - Lock-Time-Parameter KW - merged mining KW - merkle root KW - micropayment KW - micropayment channels KW - Microsoft Azur KW - miner KW - mining KW - mining hardware KW - minting KW - Namecoin KW - NameID KW - NASDAQ KW - nonce KW - off-chain transaction KW - Onename KW - OpenBazaar KW - Oracles KW - Orphan Block KW - P2P KW - Peercoin KW - peer-to-peer network KW - pegged sidechains KW - PoB KW - PoS KW - PoW KW - Proof-of-Burn KW - Proof-of-Stake KW - Proof-of-Work KW - quorum slices KW - Ripple KW - rootstock KW - scarce tokens KW - difficulty KW - SCP KW - SHA KW - sidechain KW - Simplified Payment Verification KW - scalability of blockchain KW - Slock.it KW - Soft Fork KW - SPV KW - Steemit KW - Stellar Consensus Protocol KW - Storj KW - The Bitfury Group KW - transaction KW - Two-Way-Peg KW - The DAO KW - Unspent Transaction Output KW - contracts KW - Watson IoT KW - difficulty target KW - Zookos triangle KW - Blockchain-Konsortium R3 KW - blockchain-übergreifend KW - Blöcke KW - Blockkette KW - Blumix-Plattform KW - dezentrale autonome Organisation KW - doppelter Hashwert KW - Identitätsmanagement KW - intelligente Verträge KW - Internet der Dinge KW - Japanisches Blockchain-Konsortium KW - Kette KW - Konsensalgorithmus KW - Konsensprotokoll KW - Micropayment-Kanäle KW - Off-Chain-Transaktionen KW - Peer-to-Peer Netz KW - Schwierigkeitsgrad KW - Skalierbarkeit der Blockchain KW - Transaktion KW - Verträge KW - Zielvorgabe KW - Zookos Dreieck Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-414525 SN - 978-3-86956-441-8 SN - 1613-5652 SN - 2191-1665 IS - 124 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - BOOK A1 - Gayvoronskaya, Tatiana A1 - Meinel, Christoph A1 - Schnjakin, Maxim T1 - Blockchain BT - Hype oder Innovation N2 - Der Begriff Blockchain ist in letzter Zeit zu einem Schlagwort geworden, aber nur wenige wissen, was sich genau dahinter verbirgt. Laut einer Umfrage, die im ersten Quartal 2017 veröffentlicht wurde, ist der Begriff nur bei 35 Prozent der deutschen Mittelständler bekannt. Dabei ist die Blockchain-Technologie durch ihre rasante Entwicklung und die globale Eroberung unterschiedlicher Märkte für Massenmedien sehr interessant. So sehen viele die Blockchain-Technologie entweder als eine Allzweckwaffe, zu der aber nur wenige einen Zugang haben, oder als eine Hacker-Technologie für geheime Geschäfte im Darknet. Dabei liegt die Innovation der Blockchain-Technologie in ihrer erfolgreichen Zusammensetzung bereits vorhandener Ansätze: dezentrale Netzwerke, Kryptographie, Konsensfindungsmodelle. Durch das innovative Konzept wird ein Werte-Austausch in einem dezentralen System möglich. Dabei wird kein Vertrauen zwischen dessen Knoten (z.B. Nutzer) vorausgesetzt. Mit dieser Studie möchte das Hasso-Plattner-Institut den Lesern helfen, ihren eigenen Standpunkt zur Blockchain-Technologie zu finden und dabei dazwischen unterscheiden zu können, welche Eigenschaften wirklich innovativ und welche nichts weiter als ein Hype sind. Die Autoren der vorliegenden Arbeit analysieren positive und negative Eigenschaften, welche die Blockchain-Architektur prägen, und stellen mögliche Anpassungs- und Lösungsvorschläge vor, die zu einem effizienten Einsatz der Technologie beitragen können. Jedem Unternehmen, bevor es sich für diese Technologie entscheidet, wird dabei empfohlen, für den geplanten Anwendungszweck zunächst ein klares Ziel zu definieren, das mit einem angemessenen Kosten-Nutzen-Verhältnis angestrebt werden kann. Dabei sind sowohl die Möglichkeiten als auch die Grenzen der Blockchain-Technologie zu beachten. Die relevanten Schritte, die es in diesem Zusammenhang zu beachten gilt, fasst die Studie für die Leser übersichtlich zusammen. Es wird ebenso auf akute Fragestellungen wie Skalierbarkeit der Blockchain, geeigneter Konsensalgorithmus und Sicherheit eingegangen, darunter verschiedene Arten möglicher Angriffe und die entsprechenden Gegenmaßnahmen zu deren Abwehr. Neue Blockchains etwa laufen Gefahr, geringere Sicherheit zu bieten, da Änderungen an der bereits bestehenden Technologie zu Schutzlücken und Mängeln führen können. Nach Diskussion der innovativen Eigenschaften und Probleme der Blockchain-Technologie wird auf ihre Umsetzung eingegangen. Interessierten Unternehmen stehen viele Umsetzungsmöglichkeiten zur Verfügung. Die zahlreichen Anwendungen haben entweder eine eigene Blockchain als Grundlage oder nutzen bereits bestehende und weitverbreitete Blockchain-Systeme. Zahlreiche Konsortien und Projekte bieten „Blockchain-as-a-Service“ an und unterstützen andere Unternehmen beim Entwickeln, Testen und Bereitstellen von Anwendungen. Die Studie gibt einen detaillierten Überblick über zahlreiche relevante Einsatzbereiche und Projekte im Bereich der Blockchain-Technologie. Dadurch, dass sie noch relativ jung ist und sich schnell entwickelt, fehlen ihr noch einheitliche Standards, die Zusammenarbeit der verschiedenen Systeme erlauben und an die sich alle Entwickler halten können. Aktuell orientieren sich Entwickler an Bitcoin-, Ethereum- und Hyperledger-Systeme, diese dienen als Grundlage für viele weitere Blockchain-Anwendungen. Ziel ist, den Lesern einen klaren und umfassenden Überblick über die Blockchain-Technologie und deren Möglichkeiten zu vermitteln. N2 - The term blockchain has recently become a buzzword, but only few know what exactly lies behind this approach. According to a survey, issued in the first quarter of 2017, the term is only known by 35 percent of German medium-sized enterprise representatives. However, the blockchain technology is very interesting for the mass media because of its rapid development and global capturing of different markets. For example, many see blockchain technology either as an all-purpose weapon— which only a few have access to—or as a hacker technology for secret deals in the darknet. The innovation of blockchain technology is found in its successful combination of already existing approaches: such as decentralized networks, cryptography, and consensus models. This innovative concept makes it possible to exchange values in a decentralized system. At the same time, there is no requirement for trust between its nodes (e.g. users). With this study the Hasso Plattner Institute would like to help readers form their own opinion about blockchain technology, and to distinguish between truly innovative properties and hype. The authors of the present study analyze the positive and negative properties of the blockchain architecture and suggest possible solutions, which can contribute to the efficient use of the technology. We recommend that every company define a clear target for the intended application, which is achievable with a reasonable cost-benefit ration, before deciding on this technology. Both the possibilities and the limitations of blockchain technology need to be considered. The relevant steps that must be taken in this respect are summarized /summed up for the reader in this study. Furthermore, this study elaborates on urgent problems such as the scalability of the blockchain, appropriate consensus algorithm and security, including various types of possible attacks and their countermeasures. New blockchains, for example, run the risk of reducing security, as changes to existing technology can lead to lacks in the security and failures. After discussing the innovative properties and problems of the blockchain technology, its implementation is discussed. There are a lot of implementation opportunities for companies available who are interested in the blockchain realization. The numerous applications have either their own blockchain as a basis or use existing and widespread blockchain systems. Various consortia and projects offer "blockchain-as-a-serviceänd help other companies to develop, test and deploy their own applications. This study gives a detailed overview of diverse relevant applications and projects in the field of blockchain technology. As this technology is still a relatively young and fast developing approach, it still lacks uniform standards to allow the cooperation of different systems and to which all developers can adhere. Currently, developers are orienting themselves to Bitcoin, Ethereum and Hyperledger systems, which serve as the basis for many other blockchain applications. The goal is to give readers a clear and comprehensive overview of blockchain technology and its capabilities. T3 - Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam - 113 KW - Blockchain-Konsortium R3 KW - blockchain-übergreifend KW - Blöcke KW - Blockkette KW - Blumix-Plattform KW - dezentrale autonome Organisation KW - doppelter Hashwert KW - Identitätsmanagement KW - intelligente Verträge KW - Internet der Dinge KW - Japanisches Blockchain-Konsortium KW - Kette KW - Konsensalgorithmus KW - Konsensprotokoll KW - Micropayment-Kanäle KW - Off-Chain-Transaktionen KW - Peer-to-Peer Netz KW - Schwierigkeitsgrad KW - Skalierbarkeit der Blockchain KW - Transaktion KW - Verträge KW - Zielvorgabe KW - Zookos Dreieck KW - ACINQ KW - altchain KW - alternative chain KW - ASIC KW - atomic swap KW - Australian securities exchange KW - bidirectional payment channels KW - Bitcoin Core KW - bitcoins KW - BitShares KW - Blockchain Auth KW - blockchain consortium KW - cross-chain KW - inter-chain KW - blocks KW - blockchain KW - Blockstack ID KW - Blockstack KW - blumix platform KW - BTC KW - Byzantine Agreement KW - chain KW - cloud KW - Colored Coins KW - confirmation period KW - contest period KW - DAO KW - Delegated Proof-of-Stake KW - decentralized autonomous organization KW - Distributed Proof-of-Research KW - double hashing KW - DPoS KW - ECDSA KW - Eris KW - Ether KW - Ethereum KW - E-Wallet KW - Federated Byzantine Agreement KW - federated voting KW - FollowMyVote KW - Fork KW - Gridcoin KW - Hard Fork KW - Hashed Timelock Contracts KW - hashrate KW - identity management KW - smart contracts KW - Internet of Things KW - IoT KW - BCCC KW - Japanese Blockchain Consortium KW - consensus algorithm KW - consensus protocol KW - ledger assets KW - Lightning Network KW - Lock-Time-Parameter KW - merged mining KW - merkle root KW - micropayment KW - micropayment channels KW - Microsoft Azur KW - miner KW - mining KW - mining hardware KW - minting KW - Namecoin KW - NameID KW - NASDAQ KW - nonce KW - off-chain transaction KW - Onename KW - OpenBazaar KW - Oracles KW - Orphan Block KW - P2P KW - Peercoin KW - peer-to-peer network KW - pegged sidechains KW - PoB KW - PoS KW - PoW KW - Proof-of-Burn KW - Proof-of-Stake KW - Proof-of-Work KW - quorum slices KW - Ripple KW - rootstock KW - scarce tokens KW - difficulty KW - SCP KW - SHA KW - sidechain KW - Simplified Payment Verification KW - scalability of blockchain KW - Slock.it KW - Soft Fork KW - SPV KW - Steemit KW - Stellar Consensus Protocol KW - Storj KW - The Bitfury Group KW - The DAO KW - transaction KW - Two-Way-Peg KW - Unspent Transaction Output KW - contracts KW - Watson IoT KW - difficulty target KW - Zookos triangle Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-103141 SN - 978-3-86956-394-7 SN - 1613-5652 SN - 2191-1665 IS - 113 PB - Universitätsverlag Potsdam CY - Potsdam ER -