TY - JOUR A1 - Yang, Jie A1 - Gühr, Markus A1 - Vecchione, Theodore A1 - Robinson, Matthew Scott A1 - Li, Renkai A1 - Hartmann, Nick A1 - Shen, Xiaozhe A1 - Coffee, Ryan A1 - Corbett, Jeff A1 - Fry, Alan A1 - Gaffney, Kelly A1 - Gorkhover, Tais A1 - Hast, Carsten A1 - Jobe, Keith A1 - Makasyuk, Igor A1 - Reid, Alexander A1 - Robinson, Joseph A1 - Vetter, Sharon A1 - Wang, Fenglin A1 - Weathersby, Stephen A1 - Yoneda, Charles A1 - Centurion, Martin A1 - Wang, Xijie T1 - Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses JF - Nature Communications N2 - Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angstrom spatial precision is one of the critical challenges in the chemical sciences, as the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. Here we report a gas-phase electron diffraction experiment using megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved a combination of 100 fs root-mean-squared temporal resolution and sub-Angstrom (0.76 angstrom) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule. In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Our results demonstrate a significant and promising step towards making atomically resolved movies of molecular reactions. Y1 - 2016 U6 - https://doi.org/10.1038/ncomms11232 SN - 2041-1723 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Jay, Raphael M. A1 - Norell, Jesper A1 - Eckert, Sebastian A1 - Hantschmann, Markus A1 - Beye, Martin A1 - Kennedy, Brian A1 - Quevedo, Wilson A1 - Schlotter, William F. A1 - Dakovski, Georgi L. A1 - Minitti, Michael P. A1 - Hoffmann, Matthias C. A1 - Mitra, Ankush A1 - Moeller, Stefan P. A1 - Nordlund, Dennis A1 - Zhang, Wenkai A1 - Liang, Huiyang W. A1 - Kunnus, Kristian A1 - Kubicek, Katharina A1 - Techert, Simone A. A1 - Lundberg, Marcus A1 - Wernet, Philippe A1 - Gaffney, Kelly A1 - Odelius, Michael A1 - Föhlisch, Alexander T1 - Disentangling Transient Charge Density and Metal-Ligand Covalency in Photoexcited Ferricyanide with Femtosecond Resonant Inelastic Soft X-ray Scattering JF - The journal of physical chemistry letters N2 - Soft X-ray spectroscopies are ideal probes of the local valence electronic structure of photocatalytically active metal sites. Here, we apply the selectivity of time resolved resonant inelastic X-ray scattering at the iron L-edge to the transient charge distribution of an optically excited charge-transfer state in aqueous ferricyanide. Through comparison to steady-state spectra and quantum chemical calculations, the coupled effects of valence-shell closing and ligand-hole creation are experimentally and theoretically disentangled and described in terms of orbital occupancy, metal-ligand covalency, and ligand field splitting, thereby extending established steady-state concepts to the excited-state domain. pi-Back-donation is found to be mainly determined by the metal site occupation, whereas the ligand hole instead influences sigma-donation. Our results demonstrate how ultrafast resonant inelastic X-ray scattering can help characterize local charge distributions around catalytic metal centers in short-lived charge-transfer excited states, as a step toward future rationalization and tailoring of photocatalytic capabilities of transition-metal complexes. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpclett.8b01429 SN - 1948-7185 VL - 9 IS - 12 SP - 3538 EP - 3543 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Jay, Raphael J. A1 - Norell, Jesper A1 - Kunnus, Kristjan A1 - Lundberg, Marcus A1 - Gaffney, Kelly A1 - Wernet, Philippe A1 - Odelius, Michael A1 - Föhlisch, Alexander T1 - Dynamcis of local charge densities and metal-ligand covalency in iron complexes from femtosecond resonant inelastic soft X-ray scattering T2 - Abstracts of Papers of the American Chemical Society Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:se:uu:diva-370051 SN - 0065-7727 VL - 256 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Yang, Jie A1 - Guehr, Markus A1 - Vecchione, Theodore A1 - Robinson, Matthew Scott A1 - Li, Renkai A1 - Hartmann, Nick A1 - Shen, Xiaozhe A1 - Coffee, Ryan A1 - Corbett, Jeff A1 - Fry, Alan A1 - Gaffney, Kelly A1 - Gorkhover, Tais A1 - Hast, Carsten A1 - Jobe, Keith A1 - Makasyuk, Igor A1 - Reid, Alexander A1 - Robinson, Joseph A1 - Vetter, Sharon A1 - Wang, Fenglin A1 - Weathersby, Stephen A1 - Yoneda, Charles A1 - Wang, Xijie A1 - Centurion, Martin T1 - Femtosecond gas phase electron diffraction with MeV electrons N2 - We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 326 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394989 ER - TY - JOUR A1 - Yang, Jie A1 - Gühr, Markus A1 - Vecchione, Theodore A1 - Robinson, Matthew Scott A1 - Li, Renkai A1 - Hartmann, Nick A1 - Shen, Xiaozhe A1 - Coffee, Ryan A1 - Corbett, Jeff A1 - Fry, Alan A1 - Gaffney, Kelly A1 - Gorkhover, Tais A1 - Hast, Carsten A1 - Jobe, Keith A1 - Makasyuk, Igor A1 - Reid, Alexander A1 - Robinson, Joseph A1 - Vetter, Sharon A1 - Wang, Fenglin A1 - Weathersby, Stephen A1 - Yoneda, Charles A1 - Wang, Xijie A1 - Centurion, Martin T1 - Femtosecond gas phase electron diffraction with MeV electrons JF - Faraday discussions N2 - We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution. Y1 - 2016 U6 - https://doi.org/10.1039/c6fd00071a SN - 1359-6640 SN - 1364-5498 VL - 194 SP - 563 EP - 581 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Norell, Jesper A1 - Jay, Raphael A1 - Hantschmann, Markus A1 - Eckert, Sebastian A1 - Guo, Meiyuan A1 - Gaffney, Kelly A1 - Wernet, Philippe A1 - Lundberg, Marcus A1 - Föhlisch, Alexander A1 - Odelius, Michael T1 - Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft x-ray scattering in transient photo-chemical species T2 - Physical chemistry, chemical physics N2 - We describe how inversion symmetry separation of electronic state manifolds in resonant inelastic soft X-ray scattering (RIXS) can be applied to probe excited-state dynamics with compelling selectivity. In a case study of Fe L3-edge RIXS in the ferricyanide complex Fe(CN)63−, we demonstrate with multi-configurational restricted active space spectrum simulations how the information content of RIXS spectral fingerprints can be used to unambiguously separate species of different electronic configurations, spin multiplicities, and structures, with possible involvement in the decay dynamics of photo-excited ligand-to-metal charge-transfer. Specifically, we propose that this could be applied to confirm or reject the presence of a hitherto elusive transient Quartet species. Thus, RIXS offers a particular possibility to settle a recent controversy regarding the decay pathway, and we expect the technique to be similarly applicable in other model systems of photo-induced dynamics. Y1 - 2018 U6 - https://doi.org/10.1039/c7cp08326b SN - 1463-9084 IS - 20 SP - 7243 EP - 7253 PB - RSC Publ. CY - Cambridge ER -