TY - JOUR A1 - Tu, Rui A1 - Wang, Rongjiang A1 - Walter, Thomas R. A1 - Diao, FaQi T1 - Adaptive recognition and correction of baseline shifts from collocated GPS and accelerometer using two phases Kalman filter JF - Advances in space research N2 - The real-time recognition and precise correction of baseline shifts in strong-motion records is a critical issue for GPS and accelerometer combined processing. This paper proposes a method to adaptively recognize and correct baseline shifts in strong-motion records by utilizing GPS measurements using two phases Kalman filter. By defining four kinds of learning statistics and criteria, the time series of estimated baseline shifts can be divided into four time intervals: initialization, static, transient and permanent. During the time interval in which the transient baseline shift is recognized, the dynamic noise of the Kalman filter system and the length of the baseline shifts estimation window are adaptively adjusted to yield a robust integration solution. The validations from an experimental and real datasets show that acceleration baseline shifts can be precisely recognized and corrected, thus, the combined system adaptively adjusted the estimation strategy to get a more robust solution. (C) 2014 COSPAR. Published by Elsevier Ltd. All rights reserved. KW - GPS KW - Strong-motion KW - Baseline shift KW - Kalman filter KW - Integration Y1 - 2014 U6 - https://doi.org/10.1016/j.asr.2014.07.008 SN - 0273-1177 SN - 1879-1948 VL - 54 IS - 9 SP - 1924 EP - 1932 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Acevedo, Walter A1 - Fallah, Bijan A1 - Reich, Sebastian A1 - Cubasch, Ulrich T1 - Assimilation of pseudo-tree-ring-width observations into an atmospheric general circulation model T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Paleoclimate data assimilation (DA) is a promising technique to systematically combine the information from climate model simulations and proxy records. Here, we investigate the assimilation of tree-ring-width (TRW) chronologies into an atmospheric global climate model using ensemble Kalman filter (EnKF) techniques and a process-based tree-growth forward model as an observation operator. Our results, within a perfect-model experiment setting, indicate that the "online DA" approach did not outperform the "off-line" one, despite its considerable additional implementation complexity. On the other hand, it was observed that the nonlinear response of tree growth to surface temperature and soil moisture does deteriorate the operation of the time-averaged EnKF methodology. Moreover, for the first time we show that this skill loss appears significantly sensitive to the structure of the growth rate function, used to represent the principle of limiting factors (PLF) within the forward model. In general, our experiments showed that the error reduction achieved by assimilating pseudo-TRW chronologies is modulated by the magnitude of the yearly internal variability in themodel. This result might help the dendrochronology community to optimize their sampling efforts. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 627 KW - high resolution paleoclimatology KW - sparse proxy data KW - climate reconstructions KW - limiting factors KW - Kalman filter KW - co-limitation KW - ensemble KW - variability KW - reanalysis KW - framework Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418743 SN - 1866-8372 IS - 627 SP - 545 EP - 557 ER - TY - THES A1 - Schanner, Maximilian Arthus T1 - Correlation based modeling of the archeomagnetic field T1 - Korrelationsbasierte Modellierung des archäomagnetischen Feldes N2 - The geomagnetic main field is vital for live on Earth, as it shields our habitat against the solar wind and cosmic rays. It is generated by the geodynamo in the Earth’s outer core and has a rich dynamic on various timescales. Global models of the field are used to study the interaction of the field and incoming charged particles, but also to infer core dynamics and to feed numerical simulations of the geodynamo. Modern satellite missions, such as the SWARM or the CHAMP mission, support high resolution reconstructions of the global field. From the 19 th century on, a global network of magnetic observatories has been established. It is growing ever since and global models can be constructed from the data it provides. Geomagnetic field models that extend further back in time rely on indirect observations of the field, i.e. thermoremanent records such as burnt clay or volcanic rocks and sediment records from lakes and seas. These indirect records come with (partially very large) uncertainties, introduced by the complex measurement methods and the dating procedure. Focusing on thermoremanent records only, the aim of this thesis is the development of a new modeling strategy for the global geomagnetic field during the Holocene, which takes the uncertainties into account and produces realistic estimates of the reliability of the model. This aim is approached by first considering snapshot models, in order to address the irregular spatial distribution of the records and the non-linear relation of the indirect observations to the field itself. In a Bayesian setting, a modeling algorithm based on Gaussian process regression is developed and applied to binned data. The modeling algorithm is then extended to the temporal domain and expanded to incorporate dating uncertainties. Finally, the algorithm is sequentialized to deal with numerical challenges arising from the size of the Holocene dataset. The central result of this thesis, including all of the aspects mentioned, is a new global geomagnetic field model. It covers the whole Holocene, back until 12000 BCE, and we call it ArchKalmag14k. When considering the uncertainties that are produced together with the model, it is evident that before 6000 BCE the thermoremanent database is not sufficient to support global models. For times more recent, ArchKalmag14k can be used to analyze features of the field under consideration of posterior uncertainties. The algorithm for generating ArchKalmag14k can be applied to different datasets and is provided to the community as an open source python package. N2 - Das geomagnetische Hauptfeld ist essenziell für das Leben auf der Erde, da es unseren Lebensraum gegen den Sonnenwind und kosmische Strahlung abschirmt. Es wird vom Geodynamo im Erdkern erzeugt und zeigt eine komplexe Dynamik auf unterschiedlichen Zeitskalen. Globale Modelle des Magnetfelds werden zur Studie der Wechselwirkung von einströmenden geladenen Teilchen genutzt, aber auch um Kerndynamiken zu untersuchen und um sie in numerische Simulationen des Geodynamos einzuspeisen. Moderne Satellitenmissionen, wie SWARM und CHAMP, stützen hochauflösende Rekonstruktionen des globalen Felds. Seit dem 19. Jahrhundert wird ein globales Netzwerk von magnetischen Observatorien aufgebaut. Es wächst stetig und globale Modelle können aus den Daten, die es liefert, konstruiert werden. Geomagnetische Feldmodelle, die weiter in der Zeit zurückreichen, basieren auf indirekten Beobachtungen des Felds, d.h. auf thermoremanenten Daten, wie gebrannten Tonen oder vulkanischen Gesteinen, und auf Sedimentdaten aus Seen und Meeren. Diese indirekten Beobachtungen werden mit (teilweise sehr hohen) Unsicherheiten geliefert, die aus den komplexen Datierungs- und Messmethoden resultieren. Ziel dieser Arbeit ist die Entwicklung einer neuen Modellierungsmethode für das globale geomagnetische Feld während des Holozäns, welche die Unsicherheiten berücksichtigt und realistische Schätzungen für die Verlässlichkeit des Modells liefert. Dabei werden lediglich thermoremanente Daten betrachtet. Diesem Ziel wird sich zunächst genähert, indem ein Schnappschuss-Modell konstruiert wird, um die unregelmäßige räumliche Verteilung der Daten und die nichtlineare Beziehung zwischen Daten und Magnetfeld zu untersuchen. In einem Bayesianischen Rahmen wird ein auf Gaussprozessen basierender Algorithmus entwickelt und zunächst auf diskretisierte Daten angewendet. Dieser Algorithmus wird dann um eine zeitabhängige Komponente ergänzt und erweitert, um Datierungsfehler zu berücksichtigen. Zuletzt wird der Algorithmus sequenzialisiert, um mit numerischen Herausforderungen umzugehen, die aufgrund der Größe des Holozän-Datensatzes bestehen. Das zentrale Ergebnis dieser Arbeit, welches alle genannten Aspekte beinhaltet, ist ein neues globales geomagnetisches Feldmodell. Es deckt das gesamte Holozän ab, bis ins Jahr 12000 BCE, und wir nennen es ArchKalmag14k. Bei Betrachtung der Unsicherheiten, die gemeinsam mit dem Modell ermittelt werden, wird deutlich, dass die thermoremanente Datenbasis nicht ausreicht, um globale Modelle vor dem Jahr 6000 BCE zu stützen. Für jüngere Zeiträume kann ArchKalmag14k genutzt werden, um Merkmale des Erdmagnetfelds unter Berücksichtigung der a posteriori Unsicherheiten zu analysieren. Der Algorithmus, mit dem ArchKalmag14k erzeugt wurde, kann auf weitere Datensätze angewendet werden und wird als quelloffenes python-Paket zur Verfügung gestellt. KW - geomagnetism KW - applied mathematics KW - Gaussian processes KW - Kalman filter KW - Gauß-Prozesse KW - Kalman Filter KW - angewandte Mathematik KW - Geomagnetismus Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-555875 ER - TY - THES A1 - Zhelavskaya, Irina T1 - Modeling of the Plasmasphere Dynamics T1 - Modellierung der Plasmasphärendynamik N2 - The plasmasphere is a dynamic region of cold, dense plasma surrounding the Earth. Its shape and size are highly susceptible to variations in solar and geomagnetic conditions. Having an accurate model of plasma density in the plasmasphere is important for GNSS navigation and for predicting hazardous effects of radiation in space on spacecraft. The distribution of cold plasma and its dynamic dependence on solar wind and geomagnetic conditions remain, however, poorly quantified. Existing empirical models of plasma density tend to be oversimplified as they are based on statistical averages over static parameters. Understanding the global dynamics of the plasmasphere using observations from space remains a challenge, as existing density measurements are sparse and limited to locations where satellites can provide in-situ observations. In this dissertation, we demonstrate how such sparse electron density measurements can be used to reconstruct the global electron density distribution in the plasmasphere and capture its dynamic dependence on solar wind and geomagnetic conditions. First, we develop an automated algorithm to determine the electron density from in-situ measurements of the electric field on the Van Allen Probes spacecraft. In particular, we design a neural network to infer the upper hybrid resonance frequency from the dynamic spectrograms obtained with the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite, which is then used to calculate the electron number density. The developed Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm is applied to more than four years of EMFISIS measurements to produce the publicly available electron density data set. We utilize the obtained electron density data set to develop a new global model of plasma density by employing a neural network-based modeling approach. In addition to the location, the model takes the time history of geomagnetic indices and location as inputs, and produces electron density in the equatorial plane as an output. It is extensively validated using in-situ density measurements from the Van Allen Probes mission, and also by comparing the predicted global evolution of the plasmasphere with the global IMAGE EUV images of He+ distribution. The model successfully reproduces erosion of the plasmasphere on the night side as well as plume formation and evolution, and agrees well with data. The performance of neural networks strongly depends on the availability of training data, which is limited during intervals of high geomagnetic activity. In order to provide reliable density predictions during such intervals, we can employ physics-based modeling. We develop a new approach for optimally combining the neural network- and physics-based models of the plasmasphere by means of data assimilation. The developed approach utilizes advantages of both neural network- and physics-based modeling and produces reliable global plasma density reconstructions for quiet, disturbed, and extreme geomagnetic conditions. Finally, we extend the developed machine learning-based tools and apply them to another important problem in the field of space weather, the prediction of the geomagnetic index Kp. The Kp index is one of the most widely used indicators for space weather alerts and serves as input to various models, such as for the thermosphere, the radiation belts and the plasmasphere. It is therefore crucial to predict the Kp index accurately. Previous work in this area has mostly employed artificial neural networks to nowcast and make short-term predictions of Kp, basing their inferences on the recent history of Kp and solar wind measurements at L1. We analyze how the performance of neural networks compares to other machine learning algorithms for nowcasting and forecasting Kp for up to 12 hours ahead. Additionally, we investigate several machine learning and information theory methods for selecting the optimal inputs to a predictive model of Kp. The developed tools for feature selection can also be applied to other problems in space physics in order to reduce the input dimensionality and identify the most important drivers. Research outlined in this dissertation clearly demonstrates that machine learning tools can be used to develop empirical models from sparse data and also can be used to understand the underlying physical processes. Combining machine learning, physics-based modeling and data assimilation allows us to develop novel methods benefiting from these different approaches. N2 - Die Plasmasphäre ist eine die Erde umgebende dynamische Region aus kaltem, dichtem Plasma. Ihre Form und Größe sind sehr anfällig für Schwankungen der solaren und geomagnetischen Bedingungen. Ein präzises Modell der Plasmadichte in der Plasmasphäre ist wichtig für die GNSS-Navigation und für die Vorhersage gefährlicher Auswirkungen der kosmischen Strahlung auf Raumfahrzeuge. Die Verteilung des kalten Plasmas und seine dynamische Abhängigkeit vom Sonnenwind und den geomagnetischen Bedingungen sind jedoch nach wie vor nur unzureichend quantifiziert. Bestehende empirische Modelle der Plasmadichte sind in der Regel zu stark vereinfacht, da sie auf statistischen Durchschnittswerten statischer Parameter basieren. Das Verständnis der globalen Dynamik der Plasmasphäre anhand von Beobachtungen aus dem Weltraum bleibt eine Herausforderung, da vorhandene Dichtemessungen spärlich sind und sich auf Orte beschränken, an denen Satelliten In-situ-Beobachtungen liefern können. In dieser Dissertation zeigen wir, wie solche spärlichen Elektronendichtemessungen verwendet werden können, um die globale Elektronendichteverteilung in der Plasmasphäre zu rekonstruieren und ihre dynamische Abhängigkeit vom Sonnenwind und den geomagnetischen Bedingungen zu erfassen. Zunächst entwickeln wir einen automatisierten Algorithmus zur Bestimmung der Elektronendichte aus In-situ-Messungen des elektrischen Feldes der Van Allen Probes Raumsonden. Insbesondere entwerfen wir ein neuronales Netzwerk, um die obere Hybridresonanzfrequenz aus den dynamischen Spektrogrammen abzuleiten, die wir durch die Instrumentensuite „Electric and Magnetic Field Instrument Suite“ (EMFISIS) erhielten, welche dann zur Berechnung der Elektronenzahldichte verwendet wird. Der entwickelte „Neural-network-based Upper Hybrid Resonance Determination“ (NURD)-Algorithmus wird auf mehr als vier Jahre der EMFISIS-Messungen angewendet, um den öffentlich verfügbaren Elektronendichte-Datensatz zu erstellen. Wir verwenden den erhaltenen Elektronendichte-Datensatz, um ein neues globales Modell der Plasmadichte zu entwickeln, indem wir einen auf einem neuronalen Netzwerk basierenden Modellierungsansatz verwenden. Zusätzlich zum Ort nimmt das Modell den zeitlichen Verlauf der geomagnetischen Indizes und des Ortes als Eingabe und erzeugt als Ausgabe die Elektronendichte in der äquatorialebene. Dies wird ausführlich anhand von In-situ-Dichtemessungen der Van Allen Probes-Mission und durch den Vergleich der vom Modell vorhergesagten globalen Entwicklung der Plasmasphäre mit den globalen IMAGE EUV-Bildern der He+ -Verteilung validiert. Das Modell reproduziert erfolgreich die Erosion der Plasmasphäre auf der Nachtseite sowie die Bildung und Entwicklung von Fahnen und stimmt gut mit den Daten überein. Die Leistung neuronaler Netze hängt stark von der Verfügbarkeit von Trainingsdaten ab, die für Intervalle hoher geomagnetischer Aktivität nur spärlich vorhanden sind. Um zuverlässige Dichtevorhersagen während solcher Intervalle zu liefern, können wir eine physikalische Modellierung verwenden. Wir entwickeln einen neuen Ansatz zur optimalen Kombination der neuronalen Netzwerk- und physikbasierenden Modelle der Plasmasphäre mittels Datenassimilation. Der entwickelte Ansatz nutzt sowohl die Vorteile neuronaler Netze als auch die physikalischen Modellierung und liefert zuverlässige Rekonstruktionen der globalen Plasmadichte für ruhige, gestörte und extreme geomagnetische Bedingungen. Schließlich erweitern wir die entwickelten auf maschinellem Lernen basierten Werkzeuge und wenden sie auf ein weiteres wichtiges Problem im Bereich des Weltraumwetters an, die Vorhersage des geomagnetischen Index Kp. Der Kp-Index ist einer der am häufigsten verwendeten Indikatoren für Weltraumwetterwarnungen und dient als Eingabe für verschiedene Modelle, z.B. für die Thermosphäre, die Strahlungsgürtel und die Plasmasphäre. Es ist daher wichtig, den Kp-Index genau vorherzusagen. Frühere Arbeiten in diesem Bereich verwendeten hauptsächlich künstliche neuronale Netze, um Kurzzeit-Kp-Vorhersagen zu treffen, wobei deren Schlussfolgerungen auf der jüngsten Vergangenheit von Kp- und Sonnenwindmessungen am L1-Punkt beruhten. Wir analysieren, wie sich die Leistung neuronaler Netze im Vergleich zu anderen Algorithmen für maschinelles Lernen verhält, um kurz- und längerfristige Kp-Voraussagen von bis zu 12 Stunden treffen zu können. Zusätzlich untersuchen wir verschiedene Methoden des maschinellen Lernens und der Informationstheorie zur Auswahl der optimalen Eingaben für ein Vorhersagemodell von Kp. Die entwickelten Werkzeuge zur Merkmalsauswahl können auch auf andere Probleme in der Weltraumphysik angewendet werden, um die Eingabedimensionalität zu reduzieren und die wichtigsten Treiber zu identifizieren. Die in dieser Dissertation skizzierten Untersuchungen zeigen deutlich, dass Werkzeuge für maschinelles Lernen sowohl zur Entwicklung empirischer Modelle aus spärlichen Daten als auch zum Verstehen zugrunde liegender physikalischer Prozesse genutzt werden können. Die Kombination von maschinellem Lernen, physikbasierter Modellierung und Datenassimilation ermöglicht es uns, kombinierte Methoden zu entwickeln, die von unterschiedlichen Ansätzen profitieren. KW - Plasmasphere KW - Inner magnetosphere KW - Neural networks KW - Machine learning KW - Modeling KW - Kp index KW - Geomagnetic activity KW - Data assimilation KW - Validation KW - IMAGE EUV KW - Kalman filter KW - Plasmasphäre KW - Innere Magnetosphäre KW - Neuronale Netze KW - Maschinelles Lernen KW - Modellieren KW - Forecasting KW - Kp-Index KW - Geomagnetische Aktivität KW - Datenassimilation KW - Validierung KW - Kalman Filter KW - Prognose Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-482433 ER - TY - JOUR A1 - Ropp, Guillaume A1 - Lesur, Vincent A1 - Bärenzung, Julien A1 - Holschneider, Matthias T1 - Sequential modelling of the Earth’s core magnetic field JF - Earth, Planets and Space N2 - We describe a new, original approach to the modelling of the Earth's magnetic field. The overall objective of this study is to reliably render fast variations of the core field and its secular variation. This method combines a sequential modelling approach, a Kalman filter, and a correlation-based modelling step. Sources that most significantly contribute to the field measured at the surface of the Earth are modelled. Their separation is based on strong prior information on their spatial and temporal behaviours. We obtain a time series of model distributions which display behaviours similar to those of recent models based on more classic approaches, particularly at large temporal and spatial scales. Interesting new features and periodicities are visible in our models at smaller time and spatial scales. An important aspect of our method is to yield reliable error bars for all model parameters. These errors, however, are only as reliable as the description of the different sources and the prior information used are realistic. Finally, we used a slightly different version of our method to produce candidate models for the thirteenth edition of the International Geomagnetic Reference Field. KW - geomagnetic field KW - secular variation KW - Kalman filter KW - IGRF Y1 - 2020 U6 - https://doi.org/10.1186/s40623-020-01230-1 SN - 1880-5981 VL - 72 IS - 1 PB - Springer CY - New York ER - TY - JOUR A1 - Baerenzung, Julien A1 - Holschneider, Matthias A1 - Wicht, Johannes A1 - Lesur, Vincent A1 - Sanchez, Sabrina T1 - The Kalmag model as a candidate for IGRF-13 JF - Earth, planets and space N2 - We present a new model of the geomagnetic field spanning the last 20 years and called Kalmag. Deriving from the assimilation of CHAMP and Swarm vector field measurements, it separates the different contributions to the observable field through parameterized prior covariance matrices. To make the inverse problem numerically feasible, it has been sequentialized in time through the combination of a Kalman filter and a smoothing algorithm. The model provides reliable estimates of past, present and future mean fields and associated uncertainties. The version presented here is an update of our IGRF candidates; the amount of assimilated data has been doubled and the considered time window has been extended from [2000.5, 2019.74] to [2000.5, 2020.33]. KW - Geomagnetic field KW - Secular variation KW - Assimilation KW - Kalman filter KW - Machine learning Y1 - 2020 U6 - https://doi.org/10.1186/s40623-020-01295-y SN - 1880-5981 VL - 72 IS - 1 PB - Springer CY - New York ER - TY - THES A1 - Cervantes Villa, Juan Sebastian T1 - Understanding the dynamics of radiation belt electrons by means of data assimilation T1 - Verständnis der Dynamik von Strahlungsgürtel-Elektronen durch Datenassimilation N2 - The Earth's electron radiation belts exhibit a two-zone structure, with the outer belt being highly dynamic due to the constant competition between a number of physical processes, including acceleration, loss, and transport. The flux of electrons in the outer belt can vary over several orders of magnitude, reaching levels that may disrupt satellite operations. Therefore, understanding the mechanisms that drive these variations is of high interest to the scientific community. In particular, the important role played by loss mechanisms in controlling relativistic electron dynamics has become increasingly clear in recent years. It is now widely accepted that radiation belt electrons can be lost either by precipitation into the atmosphere or by transport across the magnetopause, called magnetopause shadowing. Precipitation of electrons occurs due to pitch-angle scattering by resonant interaction with various types of waves, including whistler mode chorus, plasmaspheric hiss, and electromagnetic ion cyclotron waves. In addition, the compression of the magnetopause due to increases in solar wind dynamic pressure can substantially deplete electrons at high L shells where they find themselves in open drift paths, whereas electrons at low L shells can be lost through outward radial diffusion. Nevertheless, the role played by each physical process during electron flux dropouts still remains a fundamental puzzle. Differentiation between these processes and quantification of their relative contributions to the evolution of radiation belt electrons requires high-resolution profiles of phase space density (PSD). However, such profiles of PSD are difficult to obtain due to restrictions of spacecraft observations to a single measurement in space and time, which is also compounded by the inaccuracy of instruments. Data assimilation techniques aim to blend incomplete and inaccurate spaceborne data with physics-based models in an optimal way. In the Earth's radiation belts, it is used to reconstruct the entire radial profile of electron PSD, and it has become an increasingly important tool in validating our current understanding of radiation belt dynamics, identifying new physical processes, and predicting the near-Earth hazardous radiation environment. In this study, sparse measurements from Van Allen Probes A and B and Geostationary Operational Environmental Satellites (GOES) 13 and 15 are assimilated into the three-dimensional Versatile Electron Radiation Belt (VERB-3D) diffusion model, by means of a split-operator Kalman filter over a four-year period from 01 October 2012 to 01 October 2016. In comparison to previous works, the 3D model accounts for more physical processes, namely mixed pitch angle-energy diffusion, scattering by EMIC waves, and magnetopause shadowing. It is shown how data assimilation, by means of the innovation vector (the residual between observations and model forecast), can be used to account for missing physics in the model. This method is used to identify the radial distances from the Earth and the geomagnetic conditions where the model is inconsistent with the measured PSD for different values of the adiabatic invariants mu and K. As a result, the Kalman filter adjusts the predictions in order to match the observations, and this is interpreted as evidence of where and when additional source or loss processes are active. Furthermore, two distinct loss mechanisms responsible for the rapid dropouts of radiation belt electrons are investigated: EMIC wave-induced scattering and magnetopause shadowing. The innovation vector is inspected for values of the invariant mu ranging from 300 to 3000 MeV/G, and a statistical analysis is performed to quantitatively assess the effect of both processes as a function of various geomagnetic indices, solar wind parameters, and radial distance from the Earth. The results of this work are in agreement with previous studies that demonstrated the energy dependence of these two mechanisms. EMIC wave scattering dominates loss at lower L shells and it may amount to between 10%/hr to 30%/hr of the maximum value of PSD over all L shells for fixed first and second adiabatic invariants. On the other hand, magnetopause shadowing is found to deplete electrons across all energies, mostly at higher L shells, resulting in loss from 50%/hr to 70%/hr of the maximum PSD. Nevertheless, during times of enhanced geomagnetic activity, both processes can operate beyond such location and encompass the entire outer radiation belt. The results of this study are two-fold. Firstly, it demonstrates that the 3D data assimilative code provides a comprehensive picture of the radiation belts and is an important step toward performing reanalysis using observations from current and future missions. Secondly, it achieves a better understanding and provides critical clues of the dominant loss mechanisms responsible for the rapid dropouts of electrons at different locations over the outer radiation belt. N2 - Die Elektronenstrahlungsgürtel der Erde weisen eine Zwei-Zonen-Struktur auf, wobei der äußere Gürtel aufgrund des ständigen Zusammenspiels zwischen einer Reihe von physikalischen Prozessen, einschließlich Beschleunigung, Verlust und Transport, eine hohe Dynamik aufweist. Der Elektronenfluss im äußeren Gürtel kann über mehrere Größenordnungen variieren und Werte erreichen, die den Satellitenbetrieb stören können. Daher ist das Verständnis der Mechanismen, die diese Variabilität bewirken, von hohem Interesse für die wissenschaftliche Gemeinschaft. Insbesondere die wichtige Rolle die Verlustmechanismen bei der Kontrolle der relativistischen Elektronendynamik spielen ist in den letzten Jahren immer deutlicher geworden. Es ist inzwischen weithin anerkannt, dass Strahlungsgürtelelektronen entweder durch Interaktion mit der Atmosphäre oder durch Transport über die Magnetopause, das so genannte Magnetopauseshadowing, verloren gehen können. Der Verlust von Elektronen in der Atmosphäre erfolgt aufgrund von Pitchwinkelstreuung durch resonante Wechselwirkung mit verschiedenen Arten von magnetosphärischen Wellen, einschließlich plasmasphärischem Hiss, Whistler-Mode-Chorus, und elektromagnetischen Ionenzyklotron-Wellen (EMIC). Darüber hinaus kann die Komprimierung der Magnetopause aufgrund der Erhöhungen des dynamischen Drucks des Sonnenwindes dazu führen, dass Elektronen an hohen L-Shells, wo sie sich in offenen Driftpfaden befinden, erheblich in ihrer Dichte reduziert werden, während Elektronen an niedrigen L-Shells durch radiale Diffusion nach außen verloren gehen können. Nichtsdestotrotz bleibt die Rolle, die jeder physikalische Prozess bei der schnellen Reduktion des Elektronenflusses spielt, nach wie vor ein grundlegendes Rätsel. Die Unterscheidung zwischen diesen Prozessen und die Quantifizierung ihrer relativen Beiträge zur Entwicklung der Strahlungsgürtelelektronen erfordert hochauflösende Profile der Phasenraumdichte (PSD). Solche Profile der PSD sind jedoch schwierig zu bestimmen, da die Beobachtungen von Raumfahrzeugen auf eine einzige Messung in Raum und Zeit beschränkt sind, was auch durch die Ungenauigkeit der Instrumente erschwert wird. Datenassimilationstechniken zielen darauf ab, unvollständige und ungenaue raumgestützte Daten mit physikalisch basierten Modellen auf optimale Weise zu kombinieren. In den Strahlungsgürteln der Erde werden sie verwendet, um das gesamte radiale Profil der Elektronen-PSD zu rekonstruieren, und sie sind zu einem immer wichtigeren Werkzeug geworden, um unser derzeitiges Verständnis der Dynamik der Strahlungsgürtel zu validieren, neue physikalische Prozesse zu identifizieren und die erdnahe gefährliche Strahlungsumgebung vorherzusagen. In dieser Studie werden Messungen der Van-Allen-Probes A und B und der Geostationary-Operational-Environmental-Satellites (GOES) 13 und 15 mit Hilfe eines Split-Operator-Kalman-Filters über einen Zeitraum von vier Jahren vom 01. Oktober 2012 bis zum 01. Oktober 2016 in das dreidimensionale Versatile Electron Radiation Belt-3D-Diffusionsmodell (VERB-3D) integriert. Im Vergleich zu früheren Arbeiten berücksichtigt das 3D-Modell mehr physikalische Prozesse, nämlich gemischte Diffusion, Streuung durch EMIC-Wellen und Magnetopausenverluste. Es wird gezeigt, wie die Datenassimilation mit Hilfe des Innovationsvektors (des Residuums zwischen Beobachtungen und Modellprognose), genutzt werden kann, um fehlende physikalische Prozesse im Modell zu berücksichtigen. Diese Methode wird verwendet, um die radialen Entfernungen von der Erde und die geomagnetischen Bedingungen zu identifizieren, bei denen unser Modell für verschiedene Werte der adiabatischen Invarianten mu und K nicht mit der gemessenen PSD übereinstimmt. Infolgedessen passt der Kalman-Filter die Vorhersagen an die Beobachtungen an, und dies wird als Nachweis dafür interpretiert, wo und wann zusätzliche Quellen- oder Verlustprozesse aktiv sind. Darüber hinaus werden zwei unterschiedliche Verlustmechanismen untersucht, die für die schnellen Verluste von Strahlungsgürtelelektronen verantwortlich sind: EMIC-Wellen-induzierte Streuung und Magnetopausenverluste. Der Innovationsvektor wird bei Werten der Invariante mu im Bereich von 300 bis 3000 MeV/G untersucht, und es wird eine statistische Analyse durchgeführt, um die Wirkung beider Prozesse in Abhängigkeit von verschiedenen geomagnetischen Indizes, Sonnenwindparametern und der radialen Entfernung von der Erde quantitativ zu bewerten. Die Ergebnisse dieser Arbeit stehen in Übereinstimmung mit früheren Studien, die die Energieabhängigkeit dieser beiden Mechanismen nachgewiesen haben. Die EMIC-Wellenstreuung dominiert den Verlust bei niedrigen L-Shells und kann zwi-schen 10%/hr bis 30%/hr des Maximalwertes der PSD über alle L-Shells für feste Werte der ersten und zweiten adiabatische Invarianten betragen. Andererseits wird festgestellt, dass bei den Magnetopausenverlusten über alle Energien hinweg, meist bei höheren L-Shells, Elektronen Verluste zeigen, was zu einer Verstärkung des Verlustes von 50%/hr auf 70%/hr der maximalen PSD führt. Nichtsdestotrotz können beide Prozesse in Zeiten erhöhter geomagnetischer Aktivität über diese L-Shells hinaus wirken und den gesamten äußeren Strahlungsgürtel umfassen. Die Ergebnisse dieser Studie sind zweifacher Art. Erstens zeigt sie, dass der 3D-Daten-Assimilationscode ein umfassendes Bild der Strahlungsgürtel liefert und ein wichtiger Schritt zur Durchführung einer Reanalyse unter Verwendung von Beobachtungen aus aktuellen und zukünftigen Missionen ist. Zweitens erreicht er ein besseres Verständnis und liefert entscheidende Hinweise auf die vorherrschenden Verlustmechanismen, die für die schnellen Verluste von Elektronen an verschiedenen Orten im äußeren Strahlungsgürtel verantwortlich sind. KW - radiation belts KW - Strahlungsgürtel KW - data assimilation KW - Datenassimilation KW - phase space density KW - Phasenraumdichte KW - magnetospheric waves KW - magnetosphärischen Wellen KW - Kalman filter KW - Kalman-Filter Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-519827 ER -