TY - JOUR A1 - Grum, Marcus A1 - Bender, Benedict A1 - Alfa, A. S. A1 - Gronau, Norbert T1 - A decision maxim for efficient task realization within analytical network infrastructures JF - Decision support systems : DSS ; the international journal N2 - Faced with the increasing needs of companies, optimal dimensioning of IT hardware is becoming challenging for decision makers. In terms of analytical infrastructures, a highly evolutionary environment causes volatile, time dependent workloads in its components, and intelligent, flexible task distribution between local systems and cloud services is attractive. With the aim of developing a flexible and efficient design for analytical infrastructures, this paper proposes a flexible architecture model, which allocates tasks following a machine-specific decision heuristic. A simulation benchmarks this system with existing strategies and identifies the new decision maxim as superior in a first scenario-based simulation. KW - Analytics KW - Architecture concepts KW - Cyber-physical systems KW - Internet of things KW - Task realization strategies KW - Simulation Y1 - 2018 U6 - https://doi.org/10.1016/j.dss.2018.06.005 SN - 0167-9236 SN - 1873-5797 VL - 112 SP - 48 EP - 59 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Krentz, Konrad-Felix A1 - Meinel, Christoph T1 - Denial-of-sleep defenses for IEEE 802.15.4 coordinated sampled listening (CSL) JF - Computer Networks N2 - Coordinated sampled listening (CSL) is a standardized medium access control protocol for IEEE 80215.4 networks. Unfortunately, CSL comes without any protection against so-called denial-of-sleep attacks. Such attacks deprive energy-constrained devices of entering low-power sleep modes, thereby draining their charge. Repercussions of denial-of-sleep attacks include long outages, violated quality-of-service guarantees, and reduced customer satisfaction. However, while CSL has no built-in denial-of-sleep defenses, there already exist denial-of-sleep defenses for a predecessor of CSL, namely ContikiMAC. In this paper, we make two main contributions. First, motivated by the fact that CSL has many advantages over ContikiMAC, we tailor the existing denial-of-sleep defenses for ContikiMAC to CSL. Second, we propose several security enhancements to these existing denial-of-sleep defenses. In effect, our denial-of-sleep defenses for CSL mitigate denial-of-sleep attacks significantly better, as well as protect against a larger range of denial-of-sleep attacks than the existing denial-of-sleep defenses for ContikiMAC. We show the soundness of our denial-of-sleep defenses for CSL both analytically, as well as empirically using a whole new implementation of CSL. (C) 2018 Elsevier B.V. All rights reserved. KW - Internet of things KW - Link layer security KW - MAC security KW - Denial of sleep Y1 - 2018 U6 - https://doi.org/10.1016/j.comnet.2018.10.021 SN - 1389-1286 SN - 1872-7069 VL - 148 SP - 60 EP - 71 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Grum, Marcus A1 - Gronau, Norbert T1 - Process modeling within augmented reality BT - the bidirectional interplay of two worlds T2 - Business Modeling and Software Design, BMSD 2018 N2 - The collaboration during the modeling process is uncomfortable and characterized by various limitations. Faced with the successful transfer of first process modeling languages to the augmented world, non-transparent processes can be visualized in a more comprehensive way. With the aim to rise comfortability, speed, accuracy and manifoldness of real world process augmentations, a framework for the bidirectional interplay of the common process modeling world and the augmented world has been designed as morphologic box. Its demonstration proves the working of drawn AR integrations. Identified dimensions were derived from (1) a designed knowledge construction axiom, (2) a designed meta-model, (3) designed use cases and (4) designed directional interplay modes. Through a workshop-based survey, the so far best AR modeling configuration is identified, which can serve for benchmarks and implementations. KW - Augmented reality KW - Process modeling KW - Simulation process building KW - Generalized knowledge constructin axiom KW - Meta-model KW - Use cases Morphologic box KW - Industry 4.0 KW - CPS KW - CPPS KW - Internet of things Y1 - 2018 SN - 978-3-319-94214-8 SN - 978-3-319-94213-1 U6 - https://doi.org/10.1007/978-3-319-94214-8_7 SN - 1865-1348 VL - 319 SP - 99 EP - 115 PB - Springer CY - Berlin ER -