TY - JOUR A1 - Doering, Ulrike A1 - Grigoriev, Dmitry A1 - Tapio, Kosti A1 - Rosencrantz, Sophia A1 - Rosencrantz, Ruben R. A1 - Bald, Ilko A1 - Böker, Alexander T1 - About the mechanism of ultrasonically induced protein capsule formation JF - RSC Advances : an international journal to further the chemical sciences / Royal Society of Chemistry N2 - In this paper, we propose a consistent mechanism of protein microcapsule formation upon ultrasound treatment. Aqueous suspensions of bovine serum albumin (BSA) microcapsules filled with toluene are prepared by use of high-intensity ultrasound following a reported method. Stabilization of the oil-in-water emulsion by the adsorption of the protein molecules at the interface of the emulsion droplets is accompanied by the creation of the cross-linked capsule shell due to formation of intermolecular disulfide bonds caused by highly reactive species like superoxide radicals generated sonochemically. The evidence for this mechanism, which until now remained elusive and was not proven properly, is presented based on experimental data from SDS-PAGE, Raman spectroscopy and dynamic light scattering. Y1 - 2021 U6 - https://doi.org/10.1039/d0ra08100k SN - 2046-2069 VL - 11 IS - 27 SP - 16152 EP - 16157 PB - RSC Publishing CY - London ER - TY - JOUR A1 - Tang, Jo Sing Julia A1 - Smaczniak, Aline Debrassi A1 - Tepper, Lucas A1 - Rosencrantz, Sophia A1 - Aleksanyan, Mina A1 - Dähne, Lars A1 - Rosencrantz, Ruben R. T1 - Glycopolymer based LbL multilayer thin films with embedded liposomes JF - Macromolecular bioscience N2 - Layer-by-layer (LbL) self-assembly emerged as an efficient technique for fabricating coating systems for, e.g., drug delivery systems with great versatility and control. In this work, protecting group free and aqueous-based syntheses of bioinspired glycopolymer electrolytes aredescribed. Thin films of the glycopolymers are fabricated by LbL self-assembly and function as scaffolds for liposomes, which potentially can encapsulate active substances. The adsorbed mass, pH stability, and integrity of glycopolymer coatings as well as the embedded liposomes are investigated via whispering gallery mode (WGM) technology and quartz crystal microbalance with dissipation (QCM-D) monitoring , which enable label-free characterization. Glycopolymer thin films, with and without liposomes, are stable in the physiological pH range. QCM-D measurements verify the integrity of lipid vesicles. Thus, the fabrication of glycopolymer-based surface coatings with embedded and intact liposomes is presented. KW - glycopolymers KW - layer-by-layer self-assembly KW - liposomes KW - polyelectrolyte KW - multilayer film Y1 - 2022 U6 - https://doi.org/10.1002/mabi.202100461 SN - 1616-5187 SN - 1616-5195 VL - 22 IS - 4 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Rosencrantz, Sophia A1 - Tang, Jo Sing Julia A1 - Schulte-Osseili, Christine A1 - Böker, Alexander A1 - Rosencrantz, Ruben R. T1 - Glycopolymers by RAFT Polymerization as Functional Surfaces for Galectin-3 JF - Macromolecular chemistry and physics N2 - Glycan-protein interactions are essential biological processes with many disease-related modulations and variations. One of the key proteins involved in tumor progression and metastasis is galectin-3 (Gal-3). A lot of effort is put into the development of Gal-3 inhibitors as new therapeutic agents. The avidity of glycan-protein interactions is strongly enhanced by multivalent ligand presentation. Multivalent presentation of glycans can be accomplished by utilizing glycopolymers, which are polymers with pendent glycan groups. For the production of glycopolymers, glycomonomers are synthesized by a regioselective, microwave-assisted approach starting from lactose. The resulting methacrylamide derivatives are polymerized by RAFT and immobilized on gold surfaces using the trithiocarbonate group of the chain transfer agent. Surface plasmon resonance spectroscopy enables the label free kinetic characterization of Gal-3 binding to these multivalent glycopolymers. The measurements indicate oligomerization of Gal-3 upon exposure to multivalent environments and reveal strong specific interaction with the immobilized polymers. KW - galectin-3 KW - glycopolymers KW - multivalency KW - RAFT KW - surface plasmon resonance Y1 - 2019 U6 - https://doi.org/10.1002/macp.201900293 SN - 1022-1352 SN - 1521-3935 VL - 220 IS - 20 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Pacholski, Claudia A1 - Rosencrantz, Sophia A1 - Rosencrantz, Ruben R. A1 - Balderas-Valadez, Ruth Fabiola T1 - Plasmonic biosensors fabricated by galvanic displacement reactions for monitoring biomolecular interactions in real time JF - Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica N2 - Optical sensors are prepared by reduction of gold ions using freshly etched hydride-terminated porous silicon, and their ability to specifically detect binding between protein A/rabbit IgG and asialofetuin/Erythrina cristagalli lectin is studied. The fabrication process is simple, fast, and reproducible, and does not require complicated lab equipment. The resulting nanostructured gold layer on silicon shows an optical response in the visible range based on the excitation of localized surface plasmon resonance. Variations in the refractive index of the surrounding medium result in a color change of the sensor which can be observed by the naked eye. By monitoring the spectral position of the localized surface plasmon resonance using reflectance spectroscopy, a bulk sensitivity of 296 nm +/- 3 nm/RIU is determined. Furthermore, selectivity to target analytes is conferred to the sensor through functionalization of its surface with appropriate capture probes. For this purpose, biomolecules are deposited either by physical adsorption or by covalent coupling. Both strategies are successfully tested, i.e., the optical response of the sensor is dependent on the concentration of respective target analyte in the solution facilitating the determination of equilibrium dissociation constants for protein A/rabbit IgG as well as asialofetuin/Erythrina cristagalli lectin which are in accordance with reported values in literature. These results demonstrate the potential of the developed optical sensor for cost-efficient biosensor applications. KW - Optical sensor KW - Gold nanostructure KW - Localized surface plasmon resonance KW - Surface functionalization KW - Biomolecular interactions KW - Lectin Y1 - 2020 U6 - https://doi.org/10.1007/s00216-020-02414-0 SN - 1618-2642 SN - 1618-2650 VL - 412 IS - 14 SP - 3433 EP - 3445 PB - Springer CY - Heidelberg ER -