TY - JOUR A1 - Polley, Nabarun A1 - Werner, Peter A1 - Balderas-Valadez, Ruth Fabiola A1 - Pacholski, Claudia T1 - Bottom, top, or in between BT - combining plasmonic nanohole arrays and hydrogel microgels for optical fiber snsor applications JF - Advanced materials interfaces N2 - Attractive label-free plasmonic optical fiber sensors can be developed by cleverly choosing the arrangement of plasmonic nanostructures and other building blocks. Here, the final response depends very much on the alignment and position (stacking) of the individual elements. In this work, three different types of fiber optic sensing geometries fabricated by simple layer-by-layer stacking are presented, consisting of stimulus-sensitive poly-N-isopropylacrylamide (polyNIPAM) microgel arrays and plasmonic nanohole arrays (NHAs), namely NHA/polyNIPAM, polyNIPAM/NHA, polyNIPAM/NHA/polyNIPAM. Their optical response to a representative stimulus, namely temperature, is investigated. NHA/polyNIPAM monitors the volume phase transition of polyNIPAM microgels through changes in the spectral position and the amplitude of the reflection minimum of plasmonic NHA. In contrast, polyNIPAM/NHA shows a more complex response to the swelling and collapse of polyNIPAM microgels in their reflectance spectra. The most pronounced changes in optical response are observed by monitoring the amplitude of the reflectance minimum of this sensor during heating/cooling cycles. Finally, the triple stack of polyNIPAM/NHA/polyNIPAM at the end of a optical fiber tip combines the advantages of the NHA/polyNIPAM, polyNIPAM/NHA double stacks for optical sensing. The unique layer-by-layer stacking of microgel and nanostructure is customizable and can be easily adopted for other applications. KW - bottom-up fabrication KW - layer-by-layer stacking KW - microgel arrays KW - optical KW - fiber sensors KW - plasmonic nanohole arrays Y1 - 2022 U6 - https://doi.org/10.1002/admi.202102312 SN - 2196-7350 VL - 9 IS - 15 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Werner, Peter A1 - Münzberg, Marvin A1 - Hass, Roland A1 - Reich, Oliver T1 - Process analytical approaches for the coil-to-globule transition of poly(N-isopropylacrylamide) in a concentrated aqueous suspension T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The coil-to-globule transition of poly(N-isopropylacrylamide) (PNIPAM) microgel particles suspended in water has been investigated in situ as a function of heating and cooling rate with four optical process analytical technologies (PAT), sensitive to structural changes of the polymer. Photon Density Wave (PDW) spectroscopy, Focused Beam Reflectance Measurements (FBRM), turbidity measurements, and Particle Vision Microscope (PVM) measurements are found to be powerful tools for the monitoring of the temperature-dependent transition of such thermo-responsive polymers. These in-line technologies allow for monitoring of either the reduced scattering coefficient and the absorption coefficient, the chord length distribution, the reflected intensities, or the relative backscatter index via in-process imaging, respectively. Varying heating and cooling rates result in rate-dependent lower critical solution temperatures (LCST), with different impact of cooling and heating. Particularly, the data obtained by PDW spectroscopy can be used to estimate the thermodynamic transition temperature of PNIPAM for infinitesimal heating or cooling rates. In addition, an inverse hysteresis and a reversible building of micrometer-sized agglomerates are observed for the PNIPAM transition process. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 944 KW - poly(N-isopropylacrylamide) KW - Photon Density Wave spectroscopy KW - Focused Beam Reflectance Measurement KW - turbidity measurement KW - Particle Vision Microscope measurement KW - rate-dependent lower critical solution temperature Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431162 SN - 1866-8372 IS - 944 SP - 807 EP - 819 ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Werner, Peter A1 - Linker, Torsten T1 - Synthesis and NMR spectroscopic conformational analysis of benzoic acid esters of mono- and 1,4-dihydroxycyclohexane, 4-hydroxycyclohexanone and the -ene analogue - The more polar the molecule the more stable the axial conformer JF - Tetrahedron N2 - para-Substituted benzoic acid esters of cyclohexanol, 1,4-dihydroxycyclohexane, 4-hydroxy-cyclohexanone and of the corresponding exo-methylene derivative were synthesized and the conformational equilibria of the cyclohexane skeleton studied by low temperature H-1 and C-13 NMR spectroscopy. The geometry optimized structures of the axial/equatorial chair conformers were computed at the DFT level of theory. Only one preferred conformation of the ester group was obtained for both the axial and the equatorial conformer, respectively. The content of the axial conformer increases with growing polarity of the 6-membered ring moiety; hereby, in addition, the effect of sp(2) hybridization/polarity of C(4)= O/C(4)= CH2 on the present conformational equilibria is critically evaluated. Another dynamic process could be studied, for the first time in this kind of compounds. (C) 2017 Elsevier Ltd. All rights reserved. KW - Conformational analysis KW - A-values of COOAr on cyclohexane KW - Benzoic acid esters KW - Dynamic NMR KW - DFT calculations Y1 - 2017 U6 - https://doi.org/10.1016/j.tet.2017.04.029 SN - 0040-4020 VL - 73 SP - 3801 EP - 3809 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Rheinwalt, Aljoscha A1 - Boers, Niklas A1 - Marwan, Norbert A1 - Kurths, Jürgen A1 - Hoffmann, Peter A1 - Gerstengarbe, Friedrich-Wilhelm A1 - Werner, Peter T1 - Non-linear time series analysis of precipitation events using regional climate networks for Germany JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - Synchronous occurrences of heavy rainfall events and the study of their relation in time and space are of large socio-economical relevance, for instance for the agricultural and insurance sectors, but also for the general well-being of the population. In this study, the spatial synchronization structure is analyzed as a regional climate network constructed from precipitation event series. The similarity between event series is determined by the number of synchronous occurrences. We propose a novel standardization of this number that results in synchronization scores which are not biased by the number of events in the respective time series. Additionally, we introduce a new version of the network measure directionality that measures the spatial directionality of weighted links by also taking account of the effects of the spatial embedding of the network. This measure provides an estimate of heavy precipitation isochrones by pointing out directions along which rainfall events synchronize. We propose a climatological interpretation of this measure in terms of propagating fronts or event traces and confirm it for Germany by comparing our results to known atmospheric circulation patterns. KW - Rainfall KW - Complex networks KW - Precipitation events KW - Anisotropy KW - Dominant link directions KW - Isochrones KW - Event synchronization Y1 - 2016 U6 - https://doi.org/10.1007/s00382-015-2632-z SN - 0930-7575 SN - 1432-0894 VL - 46 SP - 1065 EP - 1074 PB - Springer CY - New York ER - TY - THES A1 - Werner, Peter T1 - Untersuchung stark-streuender Polymersuspensionen mittels optischer Methoden Y1 - 2018 ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Werner, Peter A1 - Koch, Andreas T1 - Push-pull allenes-conjugation, (anti)aromaticity and quantification of the push-pull character JF - Tetrahedron N2 - Structures, H-1/C-13 chemical shifts, and pi electron distribution/conjugation of an experimentally available and theoretically completed set of push-pull allenes Acc(2)C=C=CDon(2) (Acc=F, CHO, CF3, C N; Don=t-Bu, OMe, OEt, SMe, SEt, NCH2R) have been computed at the OFT level of theory. Both orthogonal linear and orthogonal bent structures have been obtained. In the latter case the push-pull character could be quantified by the quotient method. The C-13 chemical shift of the central allene carbon atom C-2 and chemical shift differences Delta delta(C-1, C-2) and Delta delta(C-2, C-3) of allene carbon atoms proved to be a quantitative alternative. TSNMRS of ring-closed push-pull allenes have been computed in addition and were employed to identify polar, carbene-like and carbone-like canonical structures of these molecules. KW - Push-pull allenes KW - Push-pull character KW - C-13 NMR spectroscopy KW - Quotient method KW - TSNMRS KW - ICSS KW - Aromaticity Y1 - 2013 U6 - https://doi.org/10.1016/j.tet.2013.01.027 SN - 0040-4020 VL - 69 IS - 11 SP - 2436 EP - 2445 PB - Elsevier CY - Oxford ER -