TY - INPR A1 - Conforti, Giovanni A1 - Léonard, Christian A1 - Murr, Rüdiger A1 - Roelly, Sylvie T1 - Bridges of Markov counting processes : reciprocal classes and duality formulas N2 - Processes having the same bridges are said to belong to the same reciprocal class. In this article we analyze reciprocal classes of Markov counting processes by identifying their reciprocal invariants and we characterize them as the set of counting processes satisfying some duality formula. T3 - Preprints des Instituts für Mathematik der Universität Potsdam - 3 (2014) 9 KW - counting process KW - bridge KW - reciprocal class KW - duality formula Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-71855 SN - 2193-6943 VL - 3 IS - 9 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - INPR A1 - Murr, Rüdiger T1 - Reciprocal classes of Markov processes : an approach with duality formulae N2 - In this work we are concerned with the characterization of certain classes of stochastic processes via duality formulae. First, we introduce a new formulation of a characterization of processes with independent increments, which is based on an integration by parts formula satisfied by infinitely divisible random vectors. Then we focus on the study of the reciprocal classes of Markov processes. These classes contain all stochastic processes having the same bridges, and thus similar dynamics, as a reference Markov process. We start with a resume of some existing results concerning the reciprocal classes of Brownian diffusions as solutions of duality formulae. As a new contribution, we show that the duality formula satisfied by elements of the reciprocal class of a Brownian diffusion has a physical interpretation as a stochastic Newton equation of motion. In the context of pure jump processes we derive the following new results. We will analyze the reciprocal classes of Markov counting processes and characterize them as a group of stochastic processes satisfying a duality formula. This result is applied to time-reversal of counting processes. We are able to extend some of these results to pure jump processes with different jump-sizes, in particular we are able to compare the reciprocal classes of Markov pure jump processes through a functional equation between the jump-intensities. T3 - Preprints des Instituts für Mathematik der Universität Potsdam - 1(2012)26 KW - Duality formula KW - reciprocal class KW - Levy process KW - infinite divisibility KW - counting process KW - Malliavin calculus Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-63018 ER - TY - THES A1 - Murr, Rüdiger T1 - Reciprocal classes of Markov processes : an approach with duality formulae T1 - Reziproke Klassen von Markov Prozessen : ein Ansatz mit Dualitätsformeln N2 - This work is concerned with the characterization of certain classes of stochastic processes via duality formulae. In particular we consider reciprocal processes with jumps, a subject up to now neglected in the literature. In the first part we introduce a new formulation of a characterization of processes with independent increments. This characterization is based on a duality formula satisfied by processes with infinitely divisible increments, in particular Lévy processes, which is well known in Malliavin calculus. We obtain two new methods to prove this duality formula, which are not based on the chaos decomposition of the space of square-integrable function- als. One of these methods uses a formula of partial integration that characterizes infinitely divisible random vectors. In this context, our characterization is a generalization of Stein’s lemma for Gaussian random variables and Chen’s lemma for Poisson random variables. The generality of our approach permits us to derive a characterization of infinitely divisible random measures. The second part of this work focuses on the study of the reciprocal classes of Markov processes with and without jumps and their characterization. We start with a resume of already existing results concerning the reciprocal classes of Brownian diffusions as solutions of duality formulae. As a new contribution, we show that the duality formula satisfied by elements of the reciprocal class of a Brownian diffusion has a physical interpretation as a stochastic Newton equation of motion. Thus we are able to connect the results of characterizations via duality formulae with the theory of stochastic mechanics by our interpretation, and to stochastic optimal control theory by the mathematical approach. As an application we are able to prove an invariance property of the reciprocal class of a Brownian diffusion under time reversal. In the context of pure jump processes we derive the following new results. We describe the reciprocal classes of Markov counting processes, also called unit jump processes, and obtain a characterization of the associated reciprocal class via a duality formula. This formula contains as key terms a stochastic derivative, a compensated stochastic integral and an invariant of the reciprocal class. Moreover we present an interpretation of the characterization of a reciprocal class in the context of stochastic optimal control of unit jump processes. As a further application we show that the reciprocal class of a Markov counting process has an invariance property under time reversal. Some of these results are extendable to the setting of pure jump processes, that is, we admit different jump-sizes. In particular, we show that the reciprocal classes of Markov jump processes can be compared using reciprocal invariants. A characterization of the reciprocal class of compound Poisson processes via a duality formula is possible under the assumption that the jump-sizes of the process are incommensurable. N2 - Diese Arbeit befasst sich mit der Charakterisierung von Klassen stochastischer Prozesse durch Dualitätsformeln. Es wird insbesondere der in der Literatur bisher unbehandelte Fall reziproker Klassen stochastischer Prozesse mit Sprungen untersucht. Im ersten Teil stellen wir eine neue Formulierung einer Charakterisierung von Prozessen mit unabhängigen Zuwächsen vor. Diese basiert auf der aus dem Malliavinkalkül bekannten Dualitätsformel für Prozesse mit unendlich oft teilbaren Zuwächsen. Wir präsentieren zusätzlich zwei neue Beweismethoden dieser Dualitätsformel, die nicht auf der Chaoszerlegung des Raumes quadratintegrabler Funktionale beruhen. Eine dieser Methoden basiert auf einer partiellen Integrationsformel fur unendlich oft teilbare Zufallsvektoren. In diesem Rahmen ist unsere Charakterisierung eine Verallgemeinerung des Lemma fur Gaußsche Zufallsvariablen von Stein und des Lemma fur Zufallsvariablen mit Poissonverteilung von Chen. Die Allgemeinheit dieser Methode erlaubt uns durch einen ähnlichen Zugang die Charakterisierung unendlich oft teilbarer Zufallsmaße. Im zweiten Teil der Arbeit konzentrieren wir uns auf die Charakterisierung reziproker Klassen ausgewählter Markovprozesse durch Dualitätsformeln. Wir beginnen mit einer Zusammenfassung bereits existierender Ergebnisse zu den reziproken Klassen Brownscher Bewegungen mit Drift. Es ist uns möglich die Charakterisierung solcher reziproken Klassen durch eine Dualitätsformel physikalisch umzudeuten in eine Newtonsche Gleichung. Damit gelingt uns ein Brückenschlag zwischen derartigen Charakterisierungsergebnissen und der Theorie stochastischer Mechanik durch den Interpretationsansatz, sowie der Theorie stochastischer optimaler Steuerung durch den mathematischen Ansatz. Unter Verwendung der Charakterisierung reziproker Klassen durch Dualitätsformeln beweisen wir weiterhin eine Invarianzeigenschaft der reziproken Klasse Browscher Bewegungen mit Drift unter Zeitumkehrung. Es gelingt uns weiterhin neue Resultate im Rahmen reiner Sprungprozesse zu beweisen. Wir beschreiben reziproke Klassen Markovscher Zählprozesse, d.h. Sprungprozesse mit Sprunghöhe eins, und erhalten eine Charakterisierung der reziproken Klasse vermöge einer Dualitätsformel. Diese beinhaltet als Schlüsselterme eine stochastische Ableitung nach den Sprungzeiten, ein kompensiertes stochastisches Integral und eine Invariante der reziproken Klasse. Wir präsentieren außerdem eine Interpretation der Charakterisierung einer reziproken Klasse im Rahmen der stochastischen Steuerungstheorie. Als weitere Anwendung beweisen wir eine Invarianzeigenschaft der reziproken Klasse Markovscher Zählprozesse unter Zeitumkehrung. Einige dieser Ergebnisse werden fur reine Sprungprozesse mit unterschiedlichen Sprunghöhen verallgemeinert. Insbesondere zeigen wir, dass die reziproken Klassen Markovscher Sprungprozesse vermöge reziproker Invarianten unterschieden werden können. Eine Charakterisierung der reziproken Klasse zusammengesetzter Poissonprozesse durch eine Dualitätsformel gelingt unter der Annahme inkommensurabler Sprunghöhen. KW - unendliche Teilbarkeit KW - Dualitätsformeln KW - reziproke Klassen KW - Zählprozesse KW - stochastische Mechanik KW - infinite divisibility KW - duality formulae KW - reciprocal class KW - counting process KW - stochastic mechanics Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-62091 ER - TY - INPR A1 - Murr, Rüdiger T1 - Characterization of Lévy Processes by a duality formula and related results N2 - Processes with independent increments are characterized via a duality formula, including Malliavin derivative and difference operators. This result is based on a characterization of infinitely divisible random vectors by a functional equation. A construction of the difference operator by a variational method is introduced and compared to approaches used by other authors for L´evy processes involving the chaos decomposition. Finally we extend our method to characterize infinitely divisible random measures. T3 - Mathematische Statistik und Wahrscheinlichkeitstheorie : Preprint - 2011, 02 Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-43538 ER - TY - INPR A1 - Murr, Rüdiger T1 - Dualitätsformeln für Brownsche Bewegung und für eine Irrfahrt mit Anwendung am Konvergenzergebnis von Donsker N2 - Aus dem Inhalt: 0.1 Danksagung 0.2 Einleitung 1 Allgemeines und Grundlagen 1.1 Die Brownsche Bewegung 2 Die Dualitätsformel des Wienermaßes 2.1 Wienermaß erfüllt Dualitätsformel 2.2 Dualitätsformel charakterisiert Wienermaß 3 Die diskrete Dualitätsformel der Irrfahrt 3.1 Verallgemeinerte symmetrische Irrfahrt erfüllt diskrete Dualitätsformel 3.2 Diskrete Dualitätsformel charakterisiert verallgemeinerte symmetrische Irrfahrt 4 Donskers Theorem und die Dualitätsformeln 4.1 Straffheit der renormierten stetigen Irrfahrt 4.2 Konvergenz der Irrfahrt 5 Anhang T3 - Mathematische Statistik und Wahrscheinlichkeitstheorie : Preprint - 2008, 05 Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-49476 ER -