TY - JOUR A1 - Armstrong, Michael R. A1 - Radousky, Harry B. A1 - Austin, Ryan A. A1 - Tschauner, Oliver A1 - Brown, Shaughnessy A1 - Gleason, Arianna E. A1 - Goldman, Nir A1 - Granados, Eduardo A1 - Grivickas, Paulius A1 - Holtgrewe, Nicholas A1 - Kroonblawd, Matthew P. A1 - Lee, Hae Ja A1 - Lobanov, Sergey A1 - Nagler, Bob A1 - Nam, Inhyuk A1 - Prakapenka, Vitali A1 - Prescher, Clemens A1 - Reed, Evan J. A1 - Stavrou, Elissaios A1 - Walter, Peter A1 - Goncharov, Alexander F. A1 - Belof, Jonathan L. T1 - Highly ordered graphite (HOPG) to hexagonal diamond (lonsdaleite) phase transition observed on picosecond time scales using ultrafast x-ray diffraction JF - Journal of applied physics N2 - The response of rapidly compressed highly oriented pyrolytic graphite (HOPG) normal to its basal plane was investigated at a pressure of & SIM;80 GPa. Ultrafast x-ray diffraction using & SIM;100 fs pulses at the Materials Under Extreme Conditions sector of the Linac Coherent Light Source was used to probe the changes in crystal structure resulting from picosecond timescale compression at laser drive energies ranging from 2.5 to 250 mJ. A phase transformation from HOPG to a highly textured hexagonal diamond structure is observed at the highest energy, followed by relaxation to a still highly oriented, but distorted graphite structure following release. We observe the formation of a highly oriented lonsdaleite within 20 ps, subsequent to compression. This suggests that a diffusionless martensitic mechanism may play a fundamental role in phase transition, as speculated in an early work on this system, and more recent static studies of diamonds formed in impact events. Published by AIP Publishing. Y1 - 2022 U6 - https://doi.org/10.1063/5.0085297 SN - 0021-8979 SN - 1089-7550 VL - 132 IS - 5 PB - AIP Publishing CY - Melville ER -