TY - GEN A1 - Prahl, Boris F. A1 - Boettle, Markus A1 - Costa, Luís Fílípe Carvalho da A1 - Kropp, Jürgen A1 - Rybski, Diego T1 - Damage and protection cost curves for coastal floods within the 600 largest European cities T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The economic assessment of the impacts of storm surges and sea-level rise in coastal cities requires high-level information on the damage and protection costs associated with varying flood heights. We provide a systematically and consistently calculated dataset of macroscale damage and protection cost curves for the 600 largest European coastal cities opening the perspective for a wide range of applications. Offering the first comprehensive dataset to include the costs of dike protection, we provide the underpinning information to run comparative assessments of costs and benefits of coastal adaptation. Aggregate cost curves for coastal flooding at the city-level are commonly regarded as by-products of impact assessments and are generally not published as a standalone dataset. Hence, our work also aims at initiating a more critical discussion on the availability and derivation of cost curves. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 938 KW - sea-level rise KW - topographic data KW - climate-change KW - adaptation KW - scale KW - exposure KW - model Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459672 SN - 1866-8372 IS - 938 ER - TY - GEN A1 - Unterberger, Christian A1 - Hudson, Paul A1 - Botzen, W. J. Wouter A1 - Schroeer, Katharina A1 - Steininger, Karl W. T1 - Future public sector flood risk and risk sharing arrangements BT - an assessment for Austria T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Climate change, along with socio-economic development, will increase the economic impacts of floods. While the factors that influence flood risk to private property have been extensively studied, the risk that natural disasters pose to public infrastructure and the resulting implications on public sector budgets, have received less attention. We address this gap by developing a two-staged model framework, which first assesses the flood risk to public infrastructure in Austria. Combining exposure and vulnerability information at the building level with inundation maps, we project an increase in riverine flood damage, which progressively burdens public budgets. Second, the risk estimates are integrated into an insurance model, which analyzes three different compensation arrangements in terms of the monetary burden they place on future governments' budgets and the respective volatility of payments. Formalized insurance compensation arrangements offer incentives for risk reduction measures, which lower the burden on public budgets by reducing the vulnerability of buildings that are exposed to flooding. They also significantly reduce the volatility of payments and thereby improve the predictability of flood damage expenditures. These features indicate that more formalized insurance arrangements are an improvement over the purely public compensation arrangement currently in place in Austria. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 634 KW - climate change KW - adaptation KW - flood risk KW - insurance KW - public sector KW - risk reduction Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-424629 SN - 1866-8372 IS - 634 ER - TY - GEN A1 - Metin, Ayse Duha A1 - Dung, Nguyen Viet A1 - Schröter, Kai A1 - Guse, Björn A1 - Apel, Heiko A1 - Kreibich, Heidi A1 - Vorogushyn, Sergiy A1 - Merz, Bruno T1 - How do changes along the risk chain affect flood risk? T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Flood risk is impacted by a range of physical and socio-economic processes. Hence, the quantification of flood risk ideally considers the complete flood risk chain, from atmospheric processes through catchment and river system processes to damage mechanisms in the affected areas. Although it is generally accepted that a multitude of changes along the risk chain can occur and impact flood risk, there is a lack of knowledge of how and to what extent changes in influencing factors propagate through the chain and finally affect flood risk. To fill this gap, we present a comprehensive sensitivity analysis which considers changes in all risk components, i.e. changes in climate, catchment, river system, land use, assets, and vulnerability. The application of this framework to the mesoscale Mulde catchment in Germany shows that flood risk can vary dramatically as a consequence of plausible change scenarios. It further reveals that components that have not received much attention, such as changes in dike systems or in vulnerability, may outweigh changes in often investigated components, such as climate. Although the specific results are conditional on the case study area and the selected assumptions, they emphasize the need for a broader consideration of potential drivers of change in a comprehensive way. Hence, our approach contributes to a better understanding of how the different risk components influence the overall flood risk. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1067 KW - global sensitivity analysis KW - climate change KW - river floods KW - frequency KW - Europe KW - model KW - vulnerability KW - adaptation KW - strategies KW - catchment Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468790 SN - 1866-8372 IS - 1067 ER - TY - GEN A1 - Zancolli, Giulia A1 - Baker, Timothy G. A1 - Barlow, Axel A1 - Bradley, Rebecca K. A1 - Calvete, Juan J. A1 - Carter, Kimberley C. A1 - de Jager, Kaylah A1 - Owens, John Benjamin A1 - Price, Jenny Forrester A1 - Sanz, Libia A1 - Scholes-Higham, Amy A1 - Shier, Liam A1 - Wood, Liam A1 - Wüster, Catharine E. A1 - Wüster, Wolfgang T1 - Is hybridization a source of adaptive venom variation in rattlesnakes? BT - a test, using a crotalus scutulatus × viridis hybrid zone in southwestern New Mexico T2 - Toxins N2 - Venomous snakes often display extensive variation in venom composition both between and within species. However, the mechanisms underlying the distribution of different toxins and venom types among populations and taxa remain insufficiently known. Rattlesnakes (Crotalus, Sistrurus) display extreme inter-and intraspecific variation in venom composition, centered particularly on the presence or absence of presynaptically neurotoxic phospholipases A2 such as Mojave toxin (MTX). Interspecific hybridization has been invoked as a mechanism to explain the distribution of these toxins across rattlesnakes, with the implicit assumption that they are adaptively advantageous. Here, we test the potential of adaptive hybridization as a mechanism for venom evolution by assessing the distribution of genes encoding the acidic and basic subunits of Mojave toxin across a hybrid zone between MTX-positive Crotalus scutulatus and MTX-negative C. viridis in southwestern New Mexico, USA. Analyses of morphology, mitochondrial and single copy-nuclear genes document extensive admixture within a narrow hybrid zone. The genes encoding the two MTX subunits are strictly linked, and found in most hybrids and backcrossed individuals, but not in C. viridis away from the hybrid zone. Presence of the genes is invariably associated with presence of the corresponding toxin in the venom. We conclude that introgression of highly lethal neurotoxins through hybridization is not necessarily favored by natural selection in rattlesnakes, and that even extensive hybridization may not lead to introgression of these genes into another species. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 443 KW - adaptation KW - Crotalus KW - evolution KW - hybridization KW - introgression KW - Mojave toxin KW - molecular evolution KW - venom Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407595 ER - TY - GEN A1 - Bubeck, Philip A1 - Aerts, Jeroen C. J. H. A1 - de Moel, Hans A1 - Kreibich, Heidi T1 - Preface BT - Flood-risk analysis and integrated management T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - kein abstract T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 609 KW - public-participation KW - damage KW - losses KW - vulnerability KW - Netherlands KW - adaptation KW - strategies KW - buildings KW - insurance KW - frequency Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-412387 SN - 1866-8372 IS - 609 ER - TY - GEN A1 - Boettle, Markus A1 - Rybski, Diego A1 - Kropp, Jürgen T1 - Quantifying the effect of sea level rise and flood defence BT - a point process perspective on coastal flood damage T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In contrast to recent advances in projecting sea levels, estimations about the economic impact of sea level rise are vague. Nonetheless, they are of great importance for policy making with regard to adaptation and greenhouse-gas mitigation. Since the damage is mainly caused by extreme events, we propose a stochastic framework to estimate the monetary losses from coastal floods in a confined region. For this purpose, we follow a Peak-over-Threshold approach employing a Poisson point process and the Generalised Pareto Distribution. By considering the effect of sea level rise as well as potential adaptation scenarios on the involved parameters, we are able to study the development of the annual damage. An application to the city of Copenhagen shows that a doubling of losses can be expected from a mean sea level increase of only 11 cm. In general, we find that for varying parameters the expected losses can be well approximated by one of three analytical expressions depending on the extreme value parameters. These findings reveal the complex interplay of the involved parameters and allow conclusions of fundamental relevance. For instance, we show that the damage typically increases faster than the sea level rise itself. This in turn can be of great importance for the assessment of sea level rise impacts on the global scale. Our results are accompanied by an assessment of uncertainty, which reflects the stochastic nature of extreme events. While the absolute value of uncertainty about the flood damage increases with rising mean sea levels, we find that it decreases in relation to the expected damage. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 559 KW - climate-change KW - North-Sea KW - extremes KW - costs KW - 21st-Century KW - adaptation KW - statistics KW - impacts KW - trends KW - cities Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-412405 SN - 1866-8372 IS - 559 ER -