TY - JOUR A1 - Mehrnia, Mohammad A1 - Balazadeh, Salma A1 - Zanor, Maria-Ines A1 - Müller-Röber, Bernd T1 - EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in arabidopsis JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - We report about ERF BUD ENHANCER (EBE; At5g61890), a transcription factor that affects cell proliferation as well as axillary bud outgrowth and shoot branching in Arabidopsis (Arabidopsis thaliana). EBE encodes a member of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor superfamily; the gene is strongly expressed in proliferating cells and is rapidly and transiently up-regulated in axillary meristems upon main stem decapitation. Overexpression of EBE promotes cell proliferation in growing calli, while the opposite is observed in EBE-RNAi lines. EBE overexpression also stimulates axillary bud formation and outgrowth, while repressing it results in inhibition of bud growth. Global transcriptome analysis of estradiol-inducible EBE overexpression lines revealed 48 EBE early-responsive genes, of which 14 were up-regulated and 34 were downregulated. EBE activates several genes involved in cell cycle regulation and dormancy breaking, including D-type cyclin CYCD3; 3, transcription regulator DPa, and BRCA1-ASSOCIATED RING DOMAIN1. Among the down-regulated genes were DORMANCY-ASSOCIATED PROTEIN1 (AtDRM1), AtDRM1 homolog, MEDIATOR OF ABA-REGULATED DORMANCY1, and ZINC FINGER HOMEODOMAIN5. Our data indicate that the effect of EBE on shoot branching likely results from an activation of genes involved in cell cycle regulation and dormancy breaking. Y1 - 2013 U6 - https://doi.org/10.1104/pp.113.214049 SN - 0032-0889 VL - 162 IS - 2 SP - 842 EP - 857 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Rauf, Mamoona A1 - Arif, Muhammad A1 - Dortay, Hakan A1 - Matallana-Ramirez, Lilian P. A1 - Waters, Mark T. A1 - Nam, Hong Gil A1 - Lim, Pyung-Ok A1 - Müller-Röber, Bernd A1 - Balazadeh, Salma T1 - ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription JF - EMBO reports N2 - Leaf senescence is a key physiological process in all plants. Its onset is tightly controlled by transcription factors, of which NAC factor ORE1 (ANAC092) is crucial in Arabidopsis thaliana. Enhanced expression of ORE1 triggers early senescence by controlling a downstream gene network that includes various senescence-associated genes. Here, we report that unexpectedly ORE1 interacts with the G2-like transcription factors GLK1 and GLK2, which are important for chloroplast development and maintenance, and thereby for leaf maintenance. ORE1 antagonizes GLK transcriptional activity, shifting the balance from chloroplast maintenance towards deterioration. Our finding identifies a new mechanism important for the control of senescence by ORE1. KW - transcription factor KW - senescence KW - chloroplast KW - protein-protein interaction Y1 - 2013 U6 - https://doi.org/10.1038/embor.2013.24 SN - 1469-221X VL - 14 IS - 4 SP - 382 EP - 388 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Matallana-Ramirez, Lilian P. A1 - Rauf, Mamoona A1 - Farage-Barhom, Sarit A1 - Dortay, Hakan A1 - Xue, Gang-Ping A1 - Droege-Laser, Wolfgang A1 - Lers, Amnon A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd T1 - NAC Transcription Factor ORE1 and Senescence-Induced BIFUNCTIONAL NUCLEASE1 (BFN1) Constitute a Regulatory Cascade in Arabidopsis JF - Molecular plant N2 - The NAC transcription factor ORE1 is a key regulator of senescence in Arabidopsis thaliana. Here, we demonstrate that senescence-induced and cell death-associated BIFUNCTIONAL NUCLEASE1 (BFN1) is a direct downstream target of ORE1, revealing a previously unknown regulatory cascade.Senescence is a highly regulated process that involves the action of a large number of transcription factors. The NAC transcription factor ORE1 (ANAC092) has recently been shown to play a critical role in positively controlling senescence in Arabidopsis thaliana; however, no direct target gene through which it exerts its molecular function has been identified previously. Here, we report that BIFUNCTIONAL NUCLEASE1 (BFN1), a well-known senescence-enhanced gene, is directly regulated by ORE1. We detected elevated expression of BFN1 already 2 h after induction of ORE1 in estradiol-inducible ORE1 overexpression lines and 6 h after transfection of Arabidopsis mesophyll cell protoplasts with a 35S:ORE1 construct. ORE1 and BFN1 expression patterns largely overlap, as shown by promoterreporter gene (GUS) fusions, while BFN1 expression in senescent leaves and the abscission zones of maturing flower organs was virtually absent in ore1 mutant background. In vitro binding site assays revealed a bipartite ORE1 binding site, similar to that of ORS1, a paralog of ORE1. A bipartite ORE1 binding site was identified in the BFN1 promoter; mutating the cis-element within the context of the full-length BFN1 promoter drastically reduced ORE1-mediated transactivation capacity in transiently transfected Arabidopsis mesophyll cell protoplasts. Furthermore, chromatin immunoprecipitation (ChIP) demonstrates in vivo binding of ORE1 to the BFN1 promoter. We also demonstrate binding of ORE1 in vivo to the promoters of two other senescence-associated genes, namely SAG29/SWEET15 and SINA1, supporting the central role of ORE1 during senescence. KW - Arabidopsis thaliana KW - senescence KW - transcription factor KW - ORE1 KW - BFN1 KW - promoter Y1 - 2013 U6 - https://doi.org/10.1093/mp/sst012 SN - 1674-2052 VL - 6 IS - 5 SP - 1438 EP - 1452 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Watanabe, Mutsumi A1 - Balazadeh, Salma A1 - Tohge, Takayuki A1 - Erban, Alexander A1 - Giavalisco, Patrick A1 - Kopka, Joachim A1 - Müller-Röber, Bernd A1 - Fernie, Alisdair R. A1 - Höfgen, Rainer T1 - Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in arabidopsis JF - Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants N2 - Developmental senescence is a coordinated physiological process in plants and is critical for nutrient redistribution from senescing leaves to newly formed sink organs, including young leaves and developing seeds. Progress has been made concerning the genes involved and the regulatory networks controlling senescence. The resulting complex metabolome changes during senescence have not been investigated in detail yet. Therefore, we conducted a comprehensive profiling of metabolites, including pigments, lipids, sugars, amino acids, organic acids, nutrient ions, and secondary metabolites, and determined approximately 260 metabolites at distinct stages in leaves and siliques during senescence in Arabidopsis (Arabidopsis thaliana). This provided an extensive catalog of metabolites and their spatiotemporal cobehavior with progressing senescence. Comparison with silique data provides clues to source-sink relations. Furthermore, we analyzed the metabolite distribution within single leaves along the basipetal sink-source transition trajectory during senescence. Ceramides, lysolipids, aromatic amino acids, branched chain amino acids, and stress-induced amino acids accumulated, and an imbalance of asparagine/aspartate, glutamate/glutamine, and nutrient ions in the tip region of leaves was detected. Furthermore, the spatiotemporal distribution of tricarboxylic acid cycle intermediates was already changed in the presenescent leaves, and glucosinolates, raffinose, and galactinol accumulated in the base region of leaves with preceding senescence. These results are discussed in the context of current models of the metabolic shifts occurring during developmental and environmentally induced senescence. As senescence processes are correlated to crop yield, the metabolome data and the approach provided here can serve as a blueprint for the analysis of traits and conditions linking crop yield and senescence. Y1 - 2013 U6 - https://doi.org/10.1104/pp.113.217380 SN - 0032-0889 VL - 162 IS - 3 SP - 1290 EP - 1310 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Gliwicka, Marta A1 - Nowak, Katarzyna A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd A1 - Gaj, Malgorzata D. T1 - Extensive Modulation of the Transcription Factor Transcriptome during Somatic Embryogenesis in Arabidopsis thaliana JF - PLoS one N2 - Molecular mechanisms controlling plant totipotency are largely unknown and studies on somatic embryogenesis (SE), the process through which already differentiated cells reverse their developmental program and become embryogenic, provide a unique means for deciphering molecular mechanisms controlling developmental plasticity of somatic cells. Among various factors essential for embryogenic transition of somatic cells transcription factors (TFs), crucial regulators of genetic programs, are believed to play a central role. Herein, we used quantitative real-time polymerase chain reaction (qRT-PCR) to identify TF genes affected during SE induced by in vitro culture in Arabidopsis thaliana. Expression profiles of 1,880 TFs were evaluated in the highly embryogenic Col-0 accession and the non-embryogenic tanmei/emb2757 mutant. Our study revealed 729 TFs whose expression changes during the 10-days incubation period of SE; 141 TFs displayed distinct differences in expression patterns in embryogenic versus non-embryogenic cultures. The embryo-induction stage of SE occurring during the first 5 days of culture was associated with a robust and dramatic change of the TF transcriptome characterized by the drastic up-regulation of the expression of a great majority (over 80%) of the TFs active during embryogenic culture. In contrast to SE induction, the advanced stage of embryo formation showed attenuation and stabilization of transcript levels of many TFs. In total, 519 of the SE-modulated TFs were functionally annotated and transcripts related with plant development, phytohormones and stress responses were found to be most abundant. The involvement of selected TFs in SE was verified using T-DNA insertion lines and a significantly reduced embryogenic response was found for the majority of them. This study provides comprehensive data focused on the expression of TF genes during SE and suggests directions for further research on functional genomics of SE. Y1 - 2013 U6 - https://doi.org/10.1371/journal.pone.0069261 SN - 1932-6203 VL - 8 IS - 7 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Rauf, Mamoona A1 - Arif, Muhammad A1 - Fisahn, Joachim A1 - Xue, Gang-Ping A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd T1 - NAC transcription factor speedy hyponastic growth regulates flooding-induced leaf movement in arabidopsis JF - The plant cell N2 - In rosette plants, root flooding (waterlogging) triggers rapid upward (hyponastic) leaf movement representing an important architectural stress response that critically determines plant performance in natural habitats. The directional growth is based on localized longitudinal cell expansion at the lower (abaxial) side of the leaf petiole and involves the volatile phytohormone ethylene (ET). We report the existence of a transcriptional core unit underlying directional petiole growth in Arabidopsis thaliana, governed by the NAC transcription factor SPEEDY HYPONASTIC GROWTH (SHYG). Overexpression of SHYG in transgenic Arabidopsis thaliana enhances waterlogging-triggered hyponastic leaf movement and cell expansion in abaxial cells of the basal petiole region, while both responses are largely diminished in shyg knockout mutants. Expression of several EXPANSIN and XYLOGLUCAN ENDOTRANSGLYCOSYLASE/HYDROLASE genes encoding cell wall-loosening proteins was enhanced in SHYG overexpressors but lowered in shyg. We identified ACC OXIDASE5 (ACO5), encoding a key enzyme of ET biosynthesis, as a direct transcriptional output gene of SHYG and found a significantly reduced leaf movement in response to root flooding in aco5 T-DNA insertion mutants. Expression of SHYG in shoot tissue is triggered by root flooding and treatment with ET, constituting an intrinsic ET-SHYG-ACO5 activator loop for rapid petiole cell expansion upon waterlogging. Y1 - 2013 U6 - https://doi.org/10.1105/tpc.113.117861 SN - 1040-4651 SN - 1532-298X VL - 25 IS - 12 SP - 4941 EP - 4955 PB - American Society of Plant Physiologists CY - Rockville ER -