TY - INPR A1 - Rafler, Mathias T1 - Martin-Dynkin Boundaries of the Bose Gas N2 - The Ginibre gas is a Poisson point process defined on a space of loops related to the Feynman-Kac representation of the ideal Bose gas. Here we study thermodynamic limits of different ensembles via Martin-Dynkin boundary technique and show, in which way infinitely long loops occur. This effect is the so-called Bose-Einstein condensation. T3 - Mathematische Statistik und Wahrscheinlichkeitstheorie : Preprint - 2008, 03 KW - Martin-Dynkin boundary KW - Bose-Einstein condensation KW - Point process KW - Loop space KW - Gibbs state Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-51667 ER - TY - INPR A1 - Rafler, Mathias T1 - Gaussian loop- and polya processes : a point process approach N2 - Zufällige Punktprozesse beschreiben eine (zufällige) zeitliche Abfolge von Ereignissen oder eine (zufällige) räumliche Anordnung von Objekten. Deren wichtigster Vertreter ist der Poissonprozess. Der Poissonprozess zum Intensitätsmaß, das Lebesgue-Maß ordnet jedem Gebiet sein Volumen zu, erzeugt lokal, d.h in einem beschränkten Gebiet B, gerade eine mit dem Volumen von B poissonverteilte Anzahl von Punkten, die identisch und unabhängig voneinander in B plaziert werden; im Mittel ist diese Anzahl (B). Ersetzt man durch ein Vielfaches a, so wird diese Anzahl mit dem a-fachen Mittelwert erzeugt. Poissonprozesse, die im gesamten Raum unendlich viele Punkte realisieren, enthalten bereits in einer einzigen Stichprobe genügend Informationen, um Statistik betreiben zu können: Bedingt man lokal bzgl. der Anzahl der Teilchen einer Stichprobe, so fragt man nach allen Punktprozessen, die eine solche Beobachtung hätten liefern können. Diese sind Limespunktprozesse zu dieser Beobachtung. Kommt mehr als einer in Frage, spricht man von einem Phasenübergang. Da die Menge dieser Limespunktprozesse konvex ist, fragt man nach deren Extremalpunkten, dem Rand. Im ersten Teil wird ein Poissonprozess für ein physikalisches Teilchenmodell für Bosonen konstruiert. Dieses erzeugt sogenannte Loops, das sind geschlossene Polygonzüge, die dadurch charakterisiert sind, dass man an einem Ort mit einem Punkt startet, den mit einem normalverteilten Schritt läuft und dabei nach einer gegebenen, aber zufälligen Anzahl von Schritten zum Ausgangspunkt zurückkehrt. Für verschiedene Beobachtungen von Stichproben werden zugehörige Limespunktprozesse diskutiert. Diese Beobachtungen umfassen etwa das Zählen der Loops gemäaß ihrer Länge, das Zählen der Loops insgesamt, oder das Zählen der von den Loops gemachten Schritte. Jede Wahl zieht eine charakteristische Struktur der invarianten Punktprozesse nach sich. In allen hiesigen Fällen wird ein charakteristischer Phasenübergang gezeigt und Extremalpunkte werden als spezielle Poissonprozesse identifiziert. Insbesondere wird gezeigt, wie die Wahl der Beobachtung die Länge der Loops beeinflusst. Geometrische Eigenschaften dieser Poissonprozesse sind der Gegenstand des zweiten Teils der Arbeit. Die Technik der Palmschen Verteilungen eines Punktprozesses erlaubt es, unter den unendlich vielen Loops einer Realisierung den typischen Loop herauszupicken, dessen Geometrie dann untersucht wird. Eigenschaften sind unter anderem die euklidische Länge eines Schrittes oder, nimmt man mehrere aufeinander folgende Schritte, das Volumen des von ihnen definierten Simplex. Weiterhin wird gezeigt, dass der Schwerpunkt eines typischen Loops normalverteilt ist mit einer festen Varianz. Der dritte und letzte Teil befasst sich mit der Konstruktion, den Eigenschaften und der Statistik eines neuartigen Punktprozesses, der Polyascher Summenprozess genannt wird. Seine Konstruktion verallgemeinert das Prinzip der Polyaschen Urne: Im Gegensatz zum Poissonprozess, der alle Punkte unabhängig und vor allem identisch verteilt, werden hier die Punkte nacheinander derart verteilt, dass der Ort, an dem ein Punkt plaziert wird, eine Belohnung auf die Wahrscheinlichkeit bekommt, nach der nachfolgende Punkte verteilt werden. Auf diese Weise baut der Polyasche Summenprozess "Türmchen", indem sich verschiedene Punkte am selben Ort stapeln. Es wird gezeigt, dass dennoch grundlegende Eigenschaften mit denjenigen des Poissonprozesses übereinstimmen, dazu gehören unendliche Teilbarkeit sowie Unabhängigkeit der Zuwächse. Zudem werden sein Laplace-Funktional sowie seine Palmsche Verteilung bestimmt. Letztere zeigt, dass die Höhe der Türmchen gerade geometrisch verteilt ist. Abschließend werden wiederum Statistiken, nun für den Summenprozess, diskutiert. Je nach Art der Beobachtung von der Stichprobe, etwa Anzahl, Gesamthöhe der Türmchen oder beides, gibt es in jedem der drei Fälle charakteristische Limespunktprozesse und es stellt sich heraus, dass die zugehörigen Extremalverteilungen wiederum Polyasche Summenprozesse sind. T3 - Mathematische Statistik und Wahrscheinlichkeitstheorie : Preprint - 2009, 05 Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-51638 ER -