TY - JOUR A1 - Ran, Niva A. A1 - Roland, Steffen A1 - Love, John A. A1 - Savikhin, Victoria A1 - Takacs, Christopher J. A1 - Fu, Yao-Tsung A1 - Li, Hong A1 - Coropceanu, Veaceslav A1 - Liu, Xiaofeng A1 - Bredas, Jean-Luc A1 - Bazan, Guillermo C. A1 - Toney, Michael F. A1 - Neher, Dieter A1 - Thuc-Quyen Nguyen, T1 - Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency JF - Nature Communications N2 - A long standing question in organic electronics concerns the effects of molecular orientation at donor/acceptor heterojunctions. Given a well-controlled donor/acceptor bilayer system, we uncover the genuine effects of molecular orientation on charge generation and recombination. These effects are studied through the point of view of photovoltaics-however, the results have important implications on the operation of all optoelectronic devices with donor/ acceptor interfaces, such as light emitting diodes and photodetectors. Our findings can be summarized by two points. First, devices with donor molecules face-on to the acceptor interface have a higher charge transfer state energy and less non-radiative recombination, resulting in larger open-circuit voltages and higher radiative efficiencies. Second, devices with donor molecules edge-on to the acceptor interface are more efficient at charge generation, attributed to smaller electronic coupling between the charge transfer states and the ground state, and lower activation energy for charge generation. Y1 - 2017 U6 - https://doi.org/10.1038/s41467-017-00107-4 SN - 2041-1723 VL - 8 PB - Nature Publ. Group CY - London ER - TY - THES A1 - Roland, Steffen T1 - Charge carrier recombination and open circuit voltage in organic solar cells T1 - Ladungsträger Rekombination und Leerlaufspannung in organischen Solarzellen BT - from bilayer-model systems to hybrid multi-junctions BT - von Bilayer Modellsystemen zu hybriden Mehrschichtsolarzellen N2 - Tremendous progress in the development of thin film solar cell techniques has been made over the last decade. The field of organic solar cells is constantly developing, new material classes like Perowskite solar cells are emerging and different types of hybrid organic/inorganic material combinations are being investigated for their physical properties and their applicability in thin film electronics. Besides typical single-junction architectures for solar cells, multi-junction concepts are also being investigated as they enable the overcoming of theoretical limitations of a single-junction. In multi-junction devices each sub-cell operates in different wavelength regimes and should exhibit optimized band-gap energies. It is exactly this tunability of the band-gap energy that renders organic solar cell materials interesting candidates for multi-junction applications. Nevertheless, only few attempts have been made to combine inorganic and organic solar cells in series connected multi-junction architectures. Even though a great diversity of organic solar cells exists nowadays, their open circuit voltage is usually low compared to the band-gap of the active layer. Hence, organic low band-gap solar cells in particular show low open circuit voltages and the key factors that determine the voltage losses are not yet fully understood. Besides open circuit voltage losses the recombination of charges in organic solar cells is also a prevailing research topic, especially with respect to the influence of trap states. The exploratory focus of this work is therefore set, on the one hand, on the development of hybrid organic/inorganic multi-junctions and, on the other hand, on gaining a deeper understanding of the open circuit voltage and the recombination processes of organic solar cells. In the first part of this thesis, the development of a hybrid organic/inorganic triple-junction will be discussed which showed at that time (Jan. 2015) a record power conversion efficiency of 11.7%. The inorganic sub-cells of these devices consist of hydrogenated amorphous silicon and were delivered by the Competence Center Thin-Film and Nanotechnology for Photovoltaics in Berlin. Different recombination contacts and organic sub-cells were tested in conjunction with these inorganic sub-cells on the basis of optical modeling predictions for the optimal layer thicknesses to finally reach record efficiencies for this type of solar cells. In the second part, organic model systems will be investigated to gain a better understanding of the fundamental loss mechanisms that limit the open circuit voltage of organic solar cells. First, bilayer systems with different orientation of the donor and acceptor molecules were investigated to study the influence of the donor/acceptor orientation on non-radiative voltage loss. Secondly, three different bulk heterojunction solar cells all comprising the same amount of fluorination and the same polymer backbone in the donor component were examined to study the influence of long range electrostatics on the open circuit voltage. Thirdly, the device performance of two bulk heterojunction solar cells was compared which consisted of the same donor polymer but used different fullerene acceptor molecules. By this means, the influence of changing the energetics of the acceptor component on the open circuit voltage was investigated and a full analysis of the charge carrier dynamics was presented to unravel the reasons for the worse performance of the solar cell with the higher open circuit voltage. In the third part, a new recombination model for organic solar cells will be introduced and its applicability shown for a typical low band-gap cell. This model sheds new light on the recombination process in organic solar cells in a broader context as it re-evaluates the recombination pathway of charge carriers in devices which show the presence of trap states. Thereby it addresses a current research topic and helps to resolve alleged discrepancies which can arise from the interpretation of data derived by different measurement techniques. N2 - In der Photovoltaikforschung spielen neuartige Dünnschichtsolarzellen eine immer größere Rolle. Neben innovativen Design und Anwendungskonzepten sind Material und Kostenreduzierung in der Herstellung die größten Triebfedern für die Entwicklung neuer Technologien. Hier sind neben den vielversprechenden Perowskitsolarzellen insbesondere organische Solarzellen zu nennen, die sich durch ihre chemische Vielseitigkeit, einfache Verarbeitung und stetige Weiterentwicklung in Bezug auf ihre Effizienz auszeichnen. Diese Vielseitigkeit ermöglicht die Herstellung organischer Solarzellen mit unterschiedlicher spektraler Empfindlichkeit, was wiederum Vorteile für den Einsatz in seriengeschaltete Mehrschichtsolarzellen bietet. Diese erlauben es, fundamentale Limitierungen von Einschichtsolarzellsystemen zu überwinden. Der erste Teil dieser Arbeit befasst sich daher mit der Entwicklung einer neuartigen hybriden Multischichtsolarzelle, die sowohl aus anorganischen als auch organischen Subzellen besteht und zum Zeitpunkt ihrer Veröffentlichung einen neuen Effizienzrekord für diese Klasse von Solarzellen aufzeigte. Der zweite Teil der Arbeit befasst sich mit fundamentalen physikalischen Prozessen in organischen Solarzellen, da viele Funktionsmechanismen noch nicht im Detail geklärt sind. An verschiedenen organischen Modellsolarzellsystemen wurde daher unter anderem der Einfluss molekularer Orientierung von Donor- und Akzeptorkomponenten der Solarzelle oder der Einfluss von Fluorinierung des Donors auf die Leerlaufspannung der Solarzelle untersucht. Auf diese Weise konnten neue wichtige Erkenntnisse über den Einfluss von verschiedenen Verlustkanälen und der Energetik auf die Leerlaufspannung gewonnen werden. Der letzte Teil der Arbeit widmet sich der Entwicklung eines neuen Modells, welches den Rekombinationsprozess von Ladungen in einer bestimmten organischen Solarzelle beschreibt. Dieses neue Modell wurde anhand umfangreicher Experimente validiert und ermöglicht es, insbesondere den Einfluss freier und in sogenannten Fallenzuständen gefangener Ladungen auf die Rekombination zu trennen. Damit hat dieses Modell eine weitreichende Bedeutung, zum einen für die Beurteilung von typischen Rekombinationsexperimenten in organischen Solarzellen und zum anderen für die Bewertung des Einflusses von Fallenzuständen auf den Rekombinationsstrom. KW - organic solar cells KW - charge carrier recombination KW - open circuit voltage KW - hybrid multi-junction solar cell KW - organische Solarzellen KW - Ladungsträgerrekombination KW - Leerlaufspannung KW - hybride Mehrschichtsolarzellen Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-397721 ER - TY - JOUR A1 - Roland, Steffen A1 - Yan, Liang A1 - Zhang, Qianqian A1 - Jiao, Xuechen A1 - Hunt, Adrian A1 - Ghasemi, Masoud A1 - Ade, Harald A1 - You, Wei A1 - Neher, Dieter T1 - Charge Generation and Mobility-Limited Performance of Bulk Heterojunction Solar Cells with a Higher Adduct Fullerene JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Alternative electron acceptors are being actively explored in order to advance the development of bulk-heterojunction (BHJ) organic solar cells (OSCs). The indene-C-60 bisadduct (ICBA) has been regarded as a promising candidate, as it provides high open-circuit voltage in BHJ solar cells; however, the photovoltaic performance of such ICBA-based devices is often inferior when compared to cells with the omnipresent PCBM electron acceptor. Here, by pairing the high performance polymer (FTAZ) as the donor with either PCBM or ICBA as the acceptor, we explore the physical mechanism behind the reduced performance of the ICBA-based device. Time delayed collection field (TDCF) experiments reveal reduced, yet field-independent free charge generation in the FTAZ:ICBA system, explaining the overall lower photocurrent in its cells. Through the analysis of the photoluminescence, photogeneration, and electroluminescence, we find that the lower generation efficiency is neither caused by inefficient exciton splitting, nor do we find evidence for significant energy back-transfer from the CT state to singlet excitons. In fact, the increase in open circuit voltage when replacing PCBM by ICBA is entirely caused by the increase in the CT energy, related to the shift in the LUMO energy, while changes in the radiative and nonradiative recombination losses are nearly absent. On the other hand, space charge limited current (SCLC) and bias-assisted charge extraction (BACE) measurements consistently reveal a severely lower electron mobilitiy in the FTAZ:ICBA blend. Studies of the blends with resonant soft X-ray scattering (R-SoXS), grazing incident wide-angle X-ray scattering (GIWAXS), and scanning transmission X-ray microscopy (STXM) reveal very little differences in the mesoscopic morphology but significantly less nanoscale molecular ordering of the fullerene domains in the ICBA based blends, which we propose as the main cause for the lower generation efficiency and smaller electron mobility. Calculations of the JV curves with an analytical model, using measured values, show good agreement with the experimentally determined JV characteristics, proving that these devices suffer from slow carrier extraction, resulting in significant bimolecular recombination losses. Therefore, this study highlights the importance of high charge carrier mobility for newly synthesized acceptor materials, in addition to having suitable energy levels. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpcc.7b02288 SN - 1932-7447 VL - 121 SP - 10305 EP - 10316 PB - American Chemical Society CY - Washington ER -