TY - JOUR A1 - Lah, Ljerka A1 - Löber, Ulrike A1 - Hsiang, Tom A1 - Hartmann, Stefanie T1 - A genomic comparison of putative pathogenicity-related gene families in five members of the Ophiostomatales with different lifestyles JF - Fungal biology N2 - Ophiostomatoid fungi are vectored by their bark-beetle associates and colonize different host tree species. To survive and proliferate in the host, they have evolved mechanisms for detoxification and elimination of host defence compounds, efficient nutrient sequestration, and, in pathogenic species, virulence towards plants. Here, we assembled a draft genome of the spruce pathogen Ophiostoma bicolor. For our comparative and phylogenetic analyses, we mined the genomes of closely related species (Ophiostoma piceae, Ophiostoma ulmi, Ophiostoma novo-ulmi, and Grosmannia clavigera). Our aim was to acquire a genomic and evolutionary perspective of gene families important in host colonization. Genome comparisons showed that both the nuclear and mitochondrial genomes in our assembly were largely complete. Our O. bicolor 25.3 Mbp draft genome had 10 018 predicted genes, 6041 proteins with gene ontology (GO) annotation, 269 carbohydrate-active enzymes (CAZymes), 559 peptidases and inhibitors, and 1373 genes likely involved in pathogen-host interactions. Phylogenetic analyses of selected protein families revealed core sets of cytochrome P450 genes, ABC transporters and backbone genes involved in secondary metabolite (SM) biosynthesis (polyketide synthases (PKS) and non-ribosomal synthases), and species-specific gene losses and duplications. Phylogenetic analyses of protein families of interest provided insight into evolutionary adaptations to host biochemistry in ophiostomatoid fungi. KW - Bark beetle KW - Bluestain fungi KW - Ips typographus Y1 - 2016 U6 - https://doi.org/10.1016/j.funbio.2016.12.002 SN - 1878-6146 SN - 1878-6162 VL - 121 SP - 234 EP - 252 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Cheng, Fuxia A1 - Hartmann, Stefanie A1 - Gupta, Mayetri A1 - Ibrahim, Joseph G. A1 - Vision, Todd J. T1 - A hierarchical model for incomplete alignments in phylogenetic inference N2 - Motivation: Full-length DNA and protein sequences that span the entire length of a gene are ideally used for multiple sequence alignments (MSAs) and the subsequent inference of their relationships. Frequently, however, MSAs contain a substantial amount of missing data. For example, expressed sequence tags (ESTs), which are partial sequences of expressed genes, are the predominant source of sequence data for many organisms. The patterns of missing data typical for EST-derived alignments greatly compromise the accuracy of estimated phylogenies. Results: We present a statistical method for inferring phylogenetic trees from EST-based incomplete MSA data. We propose a class of hierarchical models for modeling pairwise distances between the sequences, and develop a fully Bayesian approach for estimation of the model parameters. Once the distance matrix is estimated, the phylogenetic tree may be constructed by applying neighbor-joining (or any other algorithm of choice). We also show that maximizing the marginal likelihood from the Bayesian approach yields similar results to a pro. le likelihood estimation. The proposed methods are illustrated using simulated protein families, for which the true phylogeny is known, and one real protein family. Y1 - 2009 UR - http://bioinformatics.oxfordjournals.org/ U6 - https://doi.org/10.1093/bioinformatics/btp015 SN - 1367-4803 ER - TY - GEN A1 - Westbury, Michael V. A1 - Baleka, Sina Isabelle A1 - Barlow, Axel A1 - Hartmann, Stefanie A1 - Paijmans, Johanna L. A. A1 - Kramarz, Alejandro A1 - Forasiepi, Analía M. A1 - Bond, Mariano A1 - Gelfo, Javier N. A1 - Reguero, Marcelo A. A1 - López-Mendoza, Patricio A1 - Taglioretti, Matias A1 - Scaglia, Fernando A1 - Rinderknecht, Andrés A1 - Jones, Washington A1 - Mena, Francisco A1 - Billet, Guillaume A1 - de Muizon, Christian A1 - Aguilar, José Luis A1 - MacPhee, Ross D.E. A1 - Hofreiter, Michael T1 - A mitogenomic timetree for Darwin's enigmatic South American mammal Macrauchenia patachonica T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria. This position is consistent with a divergence estimate of B66Ma (95% credibility interval, 56.64-77.83 Ma) obtained for the split between Macrauchenia and other Panperissodactyla. Combined with their morphological distinctiveness, this evidence supports the positioning of Litopterna (possibly in company with other SANU groups) as a separate order within Laurasiatheria. We also show that, when using strict criteria, extinct taxa marked by deep divergence times and a lack of close living relatives may still be amenable to palaeogenomic analysis through iterative mapping against more distant relatives. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 793 KW - ancient DNA KW - evolutionary history KW - genome sequence KW - reveals KW - contamination KW - alignment KW - reads KW - bones Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-440801 SN - 1866-8372 IS - 793 ER - TY - JOUR A1 - Westbury, Michael V. A1 - Baleka, Sina Isabelle A1 - Barlow, Axel A1 - Hartmann, Stefanie A1 - Paijmans, Johanna L. A. A1 - Kramarz, Alejandro A1 - Forasiepi, Analia M. A1 - Bond, Mariano A1 - Gelfo, Javier N. A1 - Reguero, Marcelo A. A1 - Lopez-Mendoza, Patricio A1 - Taglioretti, Matias A1 - Scaglia, Fernando A1 - Rinderknecht, Andres A1 - Jones, Washington A1 - Mena, Francisco A1 - Billet, Guillaume A1 - de Muizon, Christian A1 - Luis Aguilar, Jose A1 - MacPhee, Ross D. E. A1 - Hofreiter, Michael T1 - A mitogenomic timetree for Darwin’s enigmatic South American mammal Macrauchenia patachonica JF - Nature Communications N2 - The unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria. This position is consistent with a divergence estimate of B66Ma (95% credibility interval, 56.64-77.83 Ma) obtained for the split between Macrauchenia and other Panperissodactyla. Combined with their morphological distinctiveness, this evidence supports the positioning of Litopterna (possibly in company with other SANU groups) as a separate order within Laurasiatheria. We also show that, when using strict criteria, extinct taxa marked by deep divergence times and a lack of close living relatives may still be amenable to palaeogenomic analysis through iterative mapping against more distant relatives. Y1 - 2017 U6 - https://doi.org/10.1038/ncomms15951 SN - 2041-1723 VL - 8 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Hill, Natascha A1 - Leow, Alexander A1 - Bleidorn, Christoph A1 - Groth, Detlef A1 - Tiedemann, Ralph A1 - Selbig, Joachim A1 - Hartmann, Stefanie T1 - Analysis of phylogenetic signal in protostomial intron patterns using Mutual Information JF - Theory in biosciences N2 - Many deep evolutionary divergences still remain unresolved, such as those among major taxa of the Lophotrochozoa. As alternative phylogenetic markers, the intron-exon structure of eukaryotic genomes and the patterns of absence and presence of spliceosomal introns appear to be promising. However, given the potential homoplasy of intron presence, the phylogenetic analysis of this data using standard evolutionary approaches has remained a challenge. Here, we used Mutual Information (MI) to estimate the phylogeny of Protostomia using gene structure data, and we compared these results with those obtained with Dollo Parsimony. Using full genome sequences from nine Metazoa, we identified 447 groups of orthologous sequences with 21,732 introns in 4,870 unique intron positions. We determined the shared absence and presence of introns in the corresponding sequence alignments and have made this data available in "IntronBase", a web-accessible and downloadable SQLite database. Our results obtained using Dollo Parsimony are obviously misled through systematic errors that arise from multiple intron loss events, but extensive filtering of data improved the quality of the estimated phylogenies. Mutual Information, in contrast, performs better with larger datasets, but at the same time it requires a complete data set, which is difficult to obtain for orthologs from a large number of taxa. Nevertheless, Mutual Information-based distances proved to be useful in analyzing this kind of data, also because the estimation of MI-based distances is independent of evolutionary models and therefore no pre-definitions of ancestral and derived character states are necessary. KW - Mutual Information KW - Evolution KW - Gene structure Y1 - 2013 U6 - https://doi.org/10.1007/s12064-012-0173-0 SN - 1431-7613 VL - 132 IS - 2 SP - 93 EP - 104 PB - Springer CY - New York ER - TY - GEN A1 - Xenikoudakis, Georgios A1 - Ahmed, Mayeesha A1 - Harris, Jacob Colt A1 - Wadleigh, Rachel A1 - Paijmans, Johanna L. A. A1 - Hartmann, Stefanie A1 - Barlow, Axel A1 - Lerner, Heather A1 - Hofreiter, Michael T1 - Ancient DNA reveals twenty million years of aquatic life in beavers T2 - Current biology : CB N2 - Xenikoudakis et al. report a partial mitochondrial genome of the extinct giant beaver Castoroides and estimate the origin of aquatic behavior in beavers to approximately 20 million years. This time estimate coincides with the extinction of terrestrial beavers and raises the question whether the two events had a common cause. Y1 - 2020 U6 - https://doi.org/10.1016/j.cub.2019.12.041 SN - 0960-9822 SN - 1879-0445 VL - 30 IS - 3 SP - R110 EP - R111 PB - Current Biology Ltd. CY - London ER - TY - GEN A1 - Hartmann, Stefanie A1 - Preick, Michaela A1 - Abelt, Silke A1 - Scheffel, André A1 - Hofreiter, Michael T1 - Annotated genome sequences of the carnivorous plant Roridula gorgonias and a non-carnivorous relative, Clethra arborea T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Objective Plant carnivory is distributed across the tree of life and has evolved at least six times independently, but sequenced and annotated nuclear genomes of carnivorous plants are currently lacking. We have sequenced and structurally annotated the nuclear genome of the carnivorous Roridula gorgonias and that of a non-carnivorous relative, Madeira’s lily-of-the-valley-tree, Clethra arborea, both within the Ericales. This data adds an important resource to study the evolutionary genetics of plant carnivory across angiosperm lineages and also for functional and systematic aspects of plants within the Ericales. Results Our assemblies have total lengths of 284 Mbp (R. gorgonias) and 511 Mbp (C. arborea) and show high BUSCO scores of 84.2% and 89.5%, respectively. We used their predicted genes together with publicly available data from other Ericales’ genomes and transcriptomes to assemble a phylogenomic data set for the inference of a species tree. However, groups of orthologs showed a marked absence of species represented by a transcriptome. We discuss possible reasons and caution against combining predicted genes from genome- and transriptome-based assemblies. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1141 KW - Carnivorous plant KW - Roridula gorgonias KW - Clethra arborea KW - Genome assembly KW - Transcriptome assembly KW - Phylogenomics KW - Orthologous Matrix (OMA) Project Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-503752 SN - 1866-8372 ER - TY - JOUR A1 - Hartmann, Stefanie A1 - Preick, Michaela A1 - Abelt, Silke A1 - Scheffel, André A1 - Hofreiter, Michael T1 - Annotated genome sequences of the carnivorous plant Roridula gorgonias and a non-carnivorous relative, Clethra arborea JF - BMC Research Notes N2 - Objective Plant carnivory is distributed across the tree of life and has evolved at least six times independently, but sequenced and annotated nuclear genomes of carnivorous plants are currently lacking. We have sequenced and structurally annotated the nuclear genome of the carnivorous Roridula gorgonias and that of a non-carnivorous relative, Madeira’s lily-of-the-valley-tree, Clethra arborea, both within the Ericales. This data adds an important resource to study the evolutionary genetics of plant carnivory across angiosperm lineages and also for functional and systematic aspects of plants within the Ericales. Results Our assemblies have total lengths of 284 Mbp (R. gorgonias) and 511 Mbp (C. arborea) and show high BUSCO scores of 84.2% and 89.5%, respectively. We used their predicted genes together with publicly available data from other Ericales’ genomes and transcriptomes to assemble a phylogenomic data set for the inference of a species tree. However, groups of orthologs showed a marked absence of species represented by a transcriptome. We discuss possible reasons and caution against combining predicted genes from genome- and transriptome-based assemblies. KW - Carnivorous plant KW - Roridula gorgonias KW - Clethra arborea KW - Genome assembly KW - Transcriptome assembly KW - Phylogenomics KW - Orthologous Matrix (OMA) Project Y1 - 2020 U6 - https://doi.org/10.1186/s13104-020-05254-4 SN - 1756-0500 VL - 13 PB - Biomed Central CY - London ER - TY - GEN A1 - Schedina, Ina Maria A1 - Hartmann, Stefanie A1 - Groth, Detlef A1 - Schlupp, Ingo A1 - Tiedemann, Ralph T1 - Comparative analysis of the gonadal transcriptomes of the all-female species Poecilia formosa and its maternal ancestor Poecilia mexicana N2 - Background The Amazon molly, Poecilia formosa (Teleostei: Poeciliinae) is an unisexual, all-female species. It evolved through the hybridisation of two closely related sexual species and exhibits clonal reproduction by sperm dependent parthenogenesis (or gynogenesis) where the sperm of a parental species is only used to activate embryogenesis of the apomictic, diploid eggs but does not contribute genetic material to the offspring. Here we provide and describe the first de novo assembled transcriptome of the Amazon molly in comparison with its maternal ancestor, the Atlantic molly Poecilia mexicana. The transcriptome data were produced through sequencing of single end libraries (100 bp) with the Illumina sequencing technique. Results 83,504,382 reads for the Amazon molly and 81,625,840 for the Atlantic molly were assembled into 127,283 and 78,961 contigs for the Amazon molly and the Atlantic molly, respectively. 63% resp. 57% of the contigs could be annotated with gene ontology terms after sequence similarity comparisons. Furthermore, we were able to identify genes normally involved in reproduction and especially in meiosis also in the transcriptome dataset of the apomictic reproducing Amazon molly. Conclusions We assembled and annotated the transcriptome of a non-model organism, the Amazon molly, without a reference genome (de novo). The obtained dataset is a fundamental resource for future research in functional and expression analysis. Also, the presence of 30 meiosis-specific genes within a species where no meiosis is known to take place is remarkable and raises new questions for future research. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 404 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401420 ER - TY - GEN A1 - Barlow, Axel A1 - Hartmann, Stefanie A1 - Gonzalez, Javier A1 - Hofreiter, Michael A1 - Paijmans, Johanna L. A. T1 - Consensify BT - a method for generating pseudohaploid genome sequences from palaeogenomic datasets with reduced error rates T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - A standard practise in palaeogenome analysis is the conversion of mapped short read data into pseudohaploid sequences, frequently by selecting a single high-quality nucleotide at random from the stack of mapped reads. This controls for biases due to differential sequencing coverage, but it does not control for differential rates and types of sequencing error, which are frequently large and variable in datasets obtained from ancient samples. These errors have the potential to distort phylogenetic and population clustering analyses, and to mislead tests of admixture using D statistics. We introduce Consensify, a method for generating pseudohaploid sequences, which controls for biases resulting from differential sequencing coverage while greatly reducing error rates. The error correction is derived directly from the data itself, without the requirement for additional genomic resources or simplifying assumptions such as contemporaneous sampling. For phylogenetic and population clustering analysis, we find that Consensify is less affected by artefacts than methods based on single read sampling. For D statistics, Consensify is more resistant to false positives and appears to be less affected by biases resulting from different laboratory protocols than other frequently used methods. Although Consensify is developed with palaeogenomic data in mind, it is applicable for any low to medium coverage short read datasets. We predict that Consensify will be a useful tool for future studies of palaeogenomes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1033 KW - palaeogenomics KW - ancient DNA KW - sequencing error KW - error reduction KW - D statistics KW - bioinformatics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472521 SN - 1866-8372 IS - 1033 ER - TY - JOUR A1 - Barlow, Axel A1 - Hartmann, Stefanie A1 - Gonzalez, Javier A1 - Hofreiter, Michael A1 - Paijmans, Johanna L. A. T1 - Consensify BT - a method for generating pseudohaploid genome sequences from palaeogenomic datasets with reduced error rates JF - Genes / Molecular Diversity Preservation International N2 - A standard practise in palaeogenome analysis is the conversion of mapped short read data into pseudohaploid sequences, frequently by selecting a single high-quality nucleotide at random from the stack of mapped reads. This controls for biases due to differential sequencing coverage, but it does not control for differential rates and types of sequencing error, which are frequently large and variable in datasets obtained from ancient samples. These errors have the potential to distort phylogenetic and population clustering analyses, and to mislead tests of admixture using D statistics. We introduce Consensify, a method for generating pseudohaploid sequences, which controls for biases resulting from differential sequencing coverage while greatly reducing error rates. The error correction is derived directly from the data itself, without the requirement for additional genomic resources or simplifying assumptions such as contemporaneous sampling. For phylogenetic and population clustering analysis, we find that Consensify is less affected by artefacts than methods based on single read sampling. For D statistics, Consensify is more resistant to false positives and appears to be less affected by biases resulting from different laboratory protocols than other frequently used methods. Although Consensify is developed with palaeogenomic data in mind, it is applicable for any low to medium coverage short read datasets. We predict that Consensify will be a useful tool for future studies of palaeogenomes. KW - palaeogenomics KW - ancient DNA KW - sequencing error KW - error reduction KW - D statistics KW - bioinformatics Y1 - 2020 U6 - https://doi.org/10.3390/genes11010050 SN - 2073-4425 VL - 11 IS - 1 PB - MDPI CY - Basel ER - TY - GEN A1 - Hartmann, Stefanie A1 - Hasenkamp, Natascha A1 - Mayer, Jens A1 - Michaux, Johan A1 - Morand, Serge A1 - Mazzoni, Camila J. A1 - Roca, Alfred L. A1 - Greenwood, Alex D. T1 - Endogenous murine leukemia retroviral variation across wild European and inbred strains of house mouse T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background: Endogenous murine leukemia retroviruses (MLVs) are high copy number proviral elements difficult to comprehensively characterize using standard low throughput sequencing approaches. However, high throughput approaches generate data that is challenging to process, interpret and present. Results: Next generation sequencing (NGS) data was generated for MLVs from two wild caught Mus musculus domesticus (from mainland France and Corsica) and for inbred laboratory mouse strains C3H, LP/J and SJL. Sequence reads were grouped using a novel sequence clustering approach as applied to retroviral sequences. A Markov cluster algorithm was employed, and the sequence reads were queried for matches to specific xenotropic (Xmv), polytropic (Pmv) and modified polytropic (Mpmv) viral reference sequences. Conclusions: Various MLV subtypes were more widespread than expected among the mice, which may be due to the higher coverage of NGS, or to the presence of similar sequence across many different proviral loci. The results did not correlate with variation in the major MLV receptor Xpr1, which can restrict exogenous MLVs, suggesting that endogenous MLV distribution may reflect gene flow more than past resistance to infection. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1329 KW - murine leukemia virus KW - endogenous retrovirus KW - Xpr1 KW - XMRV KW - genomic evolution KW - Markov cluster algorithm Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431200 SN - 1866-8372 IS - 1329 ER - TY - JOUR A1 - Hartmann, Stefanie A1 - Hasenkamp, Natascha A1 - Mayer, Jens A1 - Michaux, Johan A1 - Morand, Serge A1 - Mazzoni, Camila J. A1 - Roca, Alfred L. A1 - Greenwood, Alex D. T1 - Endogenous murine leukemia retroviral variation across wild European and inbred strains of house mouse JF - BMC genomics N2 - Background: Endogenous murine leukemia retroviruses (MLVs) are high copy number proviral elements difficult to comprehensively characterize using standard low throughput sequencing approaches. However, high throughput approaches generate data that is challenging to process, interpret and present. Results: Next generation sequencing (NGS) data was generated for MLVs from two wild caught Mus musculus domesticus (from mainland France and Corsica) and for inbred laboratory mouse strains C3H, LP/J and SJL. Sequence reads were grouped using a novel sequence clustering approach as applied to retroviral sequences. A Markov cluster algorithm was employed, and the sequence reads were queried for matches to specific xenotropic (Xmv), polytropic (Pmv) and modified polytropic (Mpmv) viral reference sequences. Conclusions: Various MLV subtypes were more widespread than expected among the mice, which may be due to the higher coverage of NGS, or to the presence of similar sequence across many different proviral loci. The results did not correlate with variation in the major MLV receptor Xpr1, which can restrict exogenous MLVs, suggesting that endogenous MLV distribution may reflect gene flow more than past resistance to infection. KW - Murine leukemia virus KW - Endogenous retrovirus KW - Xpr1 KW - XMRV KW - Genomic evolution KW - Markov cluster algorithm Y1 - 2015 U6 - https://doi.org/10.1186/s12864-015-1766-z SN - 1471-2164 VL - 16 PB - BioMed Central CY - London ER - TY - JOUR A1 - Hartmann, Stefanie A1 - Helm, Conrad A1 - Nickel, Birgit A1 - Meyer, Matthias A1 - Struck, Torsten H. A1 - Tiedemann, Ralph A1 - Selbig, Joachim A1 - Bleidorn, Christoph T1 - Exploiting gene families for phylogenomic analysis of myzostomid transcriptome data JF - PLoS one N2 - Background: In trying to understand the evolutionary relationships of organisms, the current flood of sequence data offers great opportunities, but also reveals new challenges with regard to data quality, the selection of data for subsequent analysis, and the automation of steps that were once done manually for single-gene analyses. Even though genome or transcriptome data is available for representatives of most bilaterian phyla, some enigmatic taxa still have an uncertain position in the animal tree of life. This is especially true for myzostomids, a group of symbiotic ( or parasitic) protostomes that are either placed with annelids or flatworms. Methodology: Based on similarity criteria, Illumina-based transcriptome sequences of one myzostomid were compared to protein sequences of one additional myzostomid and 29 reference metazoa and clustered into gene families. These families were then used to investigate the phylogenetic position of Myzostomida using different approaches: Alignments of 989 sequence families were concatenated, and the resulting superalignment was analyzed under a Maximum Likelihood criterion. We also used all 1,878 gene trees with at least one myzostomid sequence for a supertree approach: the individual gene trees were computed and then reconciled into a species tree using gene tree parsimony. Conclusions: Superalignments require strictly orthologous genes, and both the gene selection and the widely varying amount of data available for different taxa in our dataset may cause anomalous placements and low bootstrap support. In contrast, gene tree parsimony is designed to accommodate multilocus gene families and therefore allows a much more comprehensive data set to be analyzed. Results of this supertree approach showed a well-resolved phylogeny, in which myzostomids were part of the annelid radiation, and major bilaterian taxa were found to be monophyletic. Y1 - 2012 U6 - https://doi.org/10.1371/journal.pone.0029843 SN - 1932-6203 VL - 7 IS - 1 PB - PLoS CY - San Fransisco ER - TY - GEN A1 - Westbury, Michael V. A1 - Hartmann, Stefanie A1 - Barlow, Axel A1 - Wiesel, Ingrid A1 - Leo, Viyanna A1 - Welch, Rebecca A1 - Parker, Daniel M. A1 - Sicks, Florian A1 - Ludwig, Arne A1 - Dalen, Love A1 - Hofreiter, Michael T1 - Extended and continuous decline in effective population size results in low genomic diversity in the world's rarest hyena species, the brown hyena T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Hyenas (family Hyaenidae), as the sister group to cats (family Felidae), represent a deeply diverging branch within the cat-like carnivores (Feliformia). With an estimated population size of <10,000 individuals worldwide, the brown hyena (Parahyaena brunnea) represents the rarest of the four extant hyena species and has been listed as Near Threatened by the IUCN. Here, we report a high-coverage genome from a captive bred brown hyena and both mitochondrial and low-coverage nuclear genomes of 14 wild-caught brown hyena individuals from across southern Africa. We find that brown hyena harbor extremely low genetic diversity on both the mitochondrial and nuclear level, most likely resulting from a continuous and ongoing decline in effective population size that started similar to 1 Ma and dramatically accelerated towards the end of the Pleistocene. Despite the strikingly low genetic diversity, we find no evidence of inbreeding within the captive bred individual and reveal phylogeographic structure, suggesting the existence of several potential subpopulations within the species. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 589 KW - evolution KW - hyena KW - genomics KW - population genomics KW - diversity Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-414132 SN - 1866-8372 IS - 589 ER - TY - JOUR A1 - Westbury, Michael V. A1 - Hartmann, Stefanie A1 - Barlow, Axel A1 - Wiesel, Ingrid A1 - Leo, Viyanna A1 - Welch, Rebecca A1 - Parker, Daniel M. A1 - Sicks, Florian A1 - Ludwig, Arne A1 - Dalen, Love A1 - Hofreiter, Michael T1 - Extended and continuous decline in effective population size results in low genomic diversity in the world's rarest hyena species, the brown hyena JF - Molecular biology and evolution N2 - Hyenas (family Hyaenidae), as the sister group to cats (family Felidae), represent a deeply diverging branch within the cat-like carnivores (Feliformia). With an estimated population size of <10,000 individuals worldwide, the brown hyena (Parahyaena brunnea) represents the rarest of the four extant hyena species and has been listed as Near Threatened by the IUCN. Here, we report a high-coverage genome from a captive bred brown hyena and both mitochondrial and low-coverage nuclear genomes of 14 wild-caught brown hyena individuals from across southern Africa. We find that brown hyena harbor extremely low genetic diversity on both the mitochondrial and nuclear level, most likely resulting from a continuous and ongoing decline in effective population size that started similar to 1 Ma and dramatically accelerated towards the end of the Pleistocene. Despite the strikingly low genetic diversity, we find no evidence of inbreeding within the captive bred individual and reveal phylogeographic structure, suggesting the existence of several potential subpopulations within the species. KW - evolution KW - hyena KW - genomics KW - population genomics KW - diversity Y1 - 2018 U6 - https://doi.org/10.1093/molbev/msy037 SN - 0737-4038 SN - 1537-1719 VL - 35 IS - 5 SP - 1225 EP - 1237 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Dennis, Alice B. A1 - Ballesteros, Gabriel I. A1 - Robin, Stéphanie A1 - Schrader, Lukas A1 - Bast, Jens A1 - Berghöfer, Jan A1 - Beukeboom, Leo W. A1 - Belghazi, Maya A1 - Bretaudeau, Anthony A1 - Buellesbach, Jan A1 - Cash, Elizabeth A1 - Colinet, Dominique A1 - Dumas, Zoé A1 - Errbii, Mohammed A1 - Falabella, Patrizia A1 - Gatti, Jean-Luc A1 - Geuverink, Elzemiek A1 - Gibson, Joshua D. A1 - Hertaeg, Corinne A1 - Hartmann, Stefanie A1 - Jacquin-Joly, Emmanuelle A1 - Lammers, Mark A1 - Lavandero, Blas I. A1 - Lindenbaum, Ina A1 - Massardier-Galata, Lauriane A1 - Meslin, Camille A1 - Montagné, Nicolas A1 - Pak, Nina A1 - Poirié, Marylène A1 - Salvia, Rosanna A1 - Smith, Chris R. A1 - Tagu, Denis A1 - Tares, Sophie A1 - Vogel, Heiko A1 - Schwander, Tanja A1 - Simon, Jean-Christophe A1 - Figueroa, Christian C. A1 - Vorburger, Christoph A1 - Legeai, Fabrice A1 - Gadau, Jürgen T1 - Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum JF - BMC Genomics N2 - Background Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. Results We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. Conclusions These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org. KW - Parasitoid wasp KW - Aphid host KW - Aphidius ervi KW - Lysiphlebus fabarum KW - de novo genome assembly KW - DNA methylation loss KW - Chemosensory genes KW - Venom proteins KW - GC content KW - Toll and Imd pathways Y1 - 2020 U6 - https://doi.org/10.1186/s12864-020-6764-0 SN - 1471-2164 VL - 21 PB - BioMed Central CY - London ER - TY - GEN A1 - Dennis, Alice B. A1 - Ballesteros, Gabriel I. A1 - Robin, Stéphanie A1 - Schrader, Lukas A1 - Bast, Jens A1 - Berghöfer, Jan A1 - Beukeboom, Leo W. A1 - Belghazi, Maya A1 - Bretaudeau, Anthony A1 - Buellesbach, Jan A1 - Cash, Elizabeth A1 - Colinet, Dominique A1 - Dumas, Zoé A1 - Errbii, Mohammed A1 - Falabella, Patrizia A1 - Gatti, Jean-Luc A1 - Geuverink, Elzemiek A1 - Gibson, Joshua D. A1 - Hertaeg, Corinne A1 - Hartmann, Stefanie A1 - Jacquin-Joly, Emmanuelle A1 - Lammers, Mark A1 - Lavandero, Blas I. A1 - Lindenbaum, Ina A1 - Massardier-Galata, Lauriane A1 - Meslin, Camille A1 - Montagné, Nicolas A1 - Pak, Nina A1 - Poirié, Marylène A1 - Salvia, Rosanna A1 - Smith, Chris R. A1 - Tagu, Denis A1 - Tares, Sophie A1 - Vogel, Heiko A1 - Schwander, Tanja A1 - Simon, Jean-Christophe A1 - Figueroa, Christian C. A1 - Vorburger, Christoph A1 - Legeai, Fabrice A1 - Gadau, Jürgen T1 - Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. Results We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. Conclusions These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 989 KW - Parasitoid wasp KW - Aphid host KW - Aphidius ervi KW - GC content KW - de novo genome assembly KW - DNA methylation loss KW - Chemosensory genes KW - Toll and Imd pathways KW - Venom proteins KW - Lysiphlebus fabarum Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-476129 SN - 1866-8372 IS - 989 ER - TY - JOUR A1 - Burleigh, J. Gordon A1 - Bansal, Mukul S. A1 - Eulenstein, Oliver A1 - Hartmann, Stefanie A1 - Wehe, Andre A1 - Vision, Todd J. T1 - Genome-Scale Phylogenetics inferring the plant tree of life from 18,896 gene trees JF - Systematic biology N2 - Phylogenetic analyses using genome-scale data sets must confront incongruence among gene trees, which in plants is exacerbated by frequent gene duplications and losses. Gene tree parsimony (GTP) is a phylogenetic optimization criterion in which a species tree that minimizes the number of gene duplications induced among a set of gene trees is selected. The run time performance of previous implementations has limited its use on large-scale data sets. We used new software that incorporates recent algorithmic advances to examine the performance of GTP on a plant data set consisting of 18,896 gene trees containing 510,922 protein sequences from 136 plant taxa (giving a combined alignment length of >2.9 million characters). The relationships inferred from the GTP analysis were largely consistent with previous large-scale studies of backbone plant phylogeny and resolved some controversial nodes. The placement of taxa that were present in few gene trees generally varied the most among GTP bootstrap replicates. Excluding these taxa either before or after the GTP analysis revealed high levels of phylogenetic support across plants. The analyses supported magnoliids sister to a eudicot + monocot clade and did not support the eurosid I and II clades. This study presents a nuclear genomic perspective on the broad-scale phylogenic relationships among plants, and it demonstrates that nuclear genes with a history of duplication and loss can be phylogenetically informative for resolving the plant tree of life. KW - Gene tree-species tree reconciliation KW - gene tree parsimony KW - plant phylogeny KW - phylogenomics Y1 - 2011 U6 - https://doi.org/10.1093/sysbio/syq072 SN - 1063-5157 VL - 60 IS - 2 SP - 117 EP - 125 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Autenrieth, Marijke A1 - Hartmann, Stefanie A1 - Lah, Ljerka A1 - Roos, Anna A1 - Dennis, Alice B. A1 - Tiedemann, Ralph T1 - High-quality whole-genome sequence of an abundant Holarctic odontocete, the harbour porpoise (Phocoena phocoena) JF - Molecular ecology resources N2 - The harbour porpoise (Phocoena phocoena) is a highly mobile cetacean found across the Northern hemisphere. It occurs in coastal waters and inhabits basins that vary broadly in salinity, temperature and food availability. These diverse habitats could drive subtle differentiation among populations, but examination of this would be best conducted with a robust reference genome. Here, we report the first harbour porpoise genome, assembled de novo from an individual originating in the Kattegat Sea (Sweden). The genome is one of the most complete cetacean genomes currently available, with a total size of 2.39 Gb and 50% of the total length found in just 34 scaffolds. Using 122 of the longest scaffolds, we were able to show high levels of synteny with the genome of the domestic cattle (Bos taurus). Our draft annotation comprises 22,154 predicted genes, which we further annotated through matches to the NCBI nucleotide database, GO categorization and motif prediction. Within the predicted genes, we have confirmed the presence of >20 genes or gene families that have been associated with adaptive evolution in other cetaceans. Overall, this genome assembly and draft annotation represent a crucial addition to the genomic resources currently available for the study of porpoises and Phocoenidae evolution, phylogeny and conservation. KW - cetaceans KW - genomics/proteomics KW - mammals KW - molecular evolution Y1 - 2018 U6 - https://doi.org/10.1111/1755-0998.12932 SN - 1755-098X SN - 1755-0998 VL - 18 IS - 6 SP - 1469 EP - 1481 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Bartel, Manuela A1 - Hartmann, Stefanie A1 - Lehmann, Karola A1 - Postel, Kai A1 - Quesada, Humberto A1 - Philipp, Eva E. R. A1 - Heilmann, Katja A1 - Micheel, Burkhard A1 - Stuckas, Heiko T1 - Identification of sperm proteins as candidate biomarkers for the analysis of reproductive isolation in Mytilus: a case study for the enkurin locus JF - Marine biology : international journal on life in oceans and coastal waters N2 - Sperm proteins of the marine sessile mussels of the Mytilus edulis species complex are models to investigate reproductive isolation and speciation. This study aimed at identifying sperm proteins and their corresponding genes. This was aided by the use of monoclonal antibodies that preferentially bind to yet unknown sperm molecules. By identifying their target molecules, this approach identified proteins with relevance to Mytilus sperm function. This procedure identified 16 proteins, for example, enkurin, laminin, porin and heat shock proteins. The potential use of these proteins as genetic markers to study reproductive isolation is exemplified by analysing the enkurin locus. Enkurin evolution is driven by purifying selection, the locus displays high levels of intraspecific variation and species-specific alleles group in distinct phylogenetic clusters. These findings characterize enkurin as informative candidate biomarker for analyses of clinal variation and differential introgression in hybrid zones, for example, to understand determinants of reproductive isolation in Baltic Mytilus populations. Y1 - 2012 U6 - https://doi.org/10.1007/s00227-012-2005-7 SN - 0025-3162 VL - 159 IS - 10 SP - 2195 EP - 2207 PB - Springer CY - New York ER - TY - GEN A1 - Gurke, Marie A1 - Vidal-Gorosquieta, Amalia A1 - Pajimans, Johanna L. A. A1 - Wȩcek, Karolina A1 - Barlow, Axel A1 - González-Fortes, Gloria M. A1 - Hartmann, Stefanie A1 - Grandal-d’Anglade, Aurora A1 - Hofreiter, Michael T1 - Insight into the introduction of domestic cattle and the process of Neolithization to the Spanish region Galicia by genetic evidence T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Domestic cattle were brought to Spain by early settlers and agricultural societies. Due to missing Neolithic sites in the Spanish region of Galicia, very little is known about this process in this region. We sampled 18 cattle subfossils from different ages and different mountain caves in Galicia, of which 11 were subject to sequencing of the mitochondrial genome and phylogenetic analysis, to provide insight into the introduction of cattle to this region. We detected high similarity between samples from different time periods and were able to compare the time frame of the first domesticated cattle in Galicia to data from the connecting region of Cantabria to show a plausible connection between the Neolithization of these two regions. Our data shows a close relationship of the early domesticated cattle of Galicia and modern cow breeds and gives a general insight into cattle phylogeny. We conclude that settlers migrated to this region of Spain from Europe and introduced common European breeds to Galicia. KW - Haplogroups KW - Mitochondria KW - Cattle KW - Genomics KW - Domestic animals KW - Livestock KW - Single nucleotide polymorphisms KW - Neolithic period Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-520875 SN - 1866-8372 IS - 4 ER - TY - JOUR A1 - Gurke, Marie A1 - Vidal-Gorosquieta, Amalia A1 - Pajimans, Johanna L. A. A1 - Wȩcek, Karolina A1 - Barlow, Axel A1 - González-Fortes, Gloria M. A1 - Hartmann, Stefanie A1 - Grandal-d’Anglade, Aurora A1 - Hofreiter, Michael T1 - Insight into the introduction of domestic cattle and the process of Neolithization to the Spanish region Galicia by genetic evidence JF - PLoS ONE N2 - Domestic cattle were brought to Spain by early settlers and agricultural societies. Due to missing Neolithic sites in the Spanish region of Galicia, very little is known about this process in this region. We sampled 18 cattle subfossils from different ages and different mountain caves in Galicia, of which 11 were subject to sequencing of the mitochondrial genome and phylogenetic analysis, to provide insight into the introduction of cattle to this region. We detected high similarity between samples from different time periods and were able to compare the time frame of the first domesticated cattle in Galicia to data from the connecting region of Cantabria to show a plausible connection between the Neolithization of these two regions. Our data shows a close relationship of the early domesticated cattle of Galicia and modern cow breeds and gives a general insight into cattle phylogeny. We conclude that settlers migrated to this region of Spain from Europe and introduced common European breeds to Galicia. KW - Haplogroups KW - Mitochondria KW - Cattle KW - Genomics KW - Domestic animals KW - Livestock KW - Single nucleotide polymorphisms KW - Neolithic period Y1 - 2020 U6 - https://doi.org/10.1371/journal.pone.0249537 SN - 1932-6203 VL - 16 IS - 4 PB - Public Library of Science CY - San Francisco ER - TY - BOOK A1 - Hartmann, Stefanie A1 - Selbig, Joachim T1 - Introductory Bioinformatics Y1 - 2009 SN - 978-3-8370-5189-6 PB - Books on Demand CY - Norderstedt ER - TY - JOUR A1 - Schedina, Ina-Maria A1 - Pfautsch, Simone A1 - Hartmann, Stefanie A1 - Dolgener, N. A1 - Polgar, Anika A1 - Bianco, Pier Giorgio A1 - Tiedemann, Ralph A1 - Ketmaier, Valerio T1 - Isolation and characterization of eight microsatellite loci in the brook lamprey Lampetra planeri (Petromyzontiformes) using 454 sequence data JF - Journal of fish biology N2 - Eight polymorphic microsatellite loci were developed for the brook lamprey Lampetra planeri through 454 sequencing and their usefulness was tested in 45 individuals of both L. planeri and the river lamprey Lampetra fluviatilis. The number of alleles per loci ranged between two and five; the Italian and Irish populations had a mean expected heterozygosity of 0.388 and 0.424 and a mean observed heterozygosity of 0.418 and 0.411, respectively. (C) 2014 The Fisheries Society of the British Isles KW - conservation KW - population structure KW - species pair Y1 - 2014 U6 - https://doi.org/10.1111/jfb.12470 SN - 0022-1112 SN - 1095-8649 VL - 85 IS - 3 SP - 960 EP - 964 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Hilgers, Leon A1 - Hartmann, Stefanie A1 - Hofreiter, Michael A1 - von Rintelen, Thomas T1 - Novel Genes, Ancient Genes, and Gene Co-Option Contributed o the Genetic Basis of the Radula, a Molluscan Innovation JF - Molecular biology and evolution N2 - The radula is the central foraging organ and apomorphy of the Mollusca. However, in contrast to other innovations, including the mollusk shell, genetic underpinnings of radula formation remain virtually unknown. Here, we present the first radula formative tissue transcriptome using the viviparous freshwater snail Tylomelania sarasinorum and compare it to foot tissue and the shell-building mantle of the same species. We combine differential expression, functional enrichment, and phylostratigraphic analyses to identify both specific and shared genetic underpinnings of the three tissues as well as their dominant functions and evolutionary origins. Gene expression of radula formative tissue is very distinct, but nevertheless more similar to mantle than to foot. Generally, the genetic bases of both radula and shell formation were shaped by novel orchestration of preexisting genes and continuous evolution of novel genes. A significantly increased proportion of radula-specific genes originated since the origin of stem-mollusks, indicating that novel genes were especially important for radula evolution. Genes with radula-specific expression in our study are frequently also expressed during the formation of other lophotrochozoan hard structures, like chaetae (hes1, arx), spicules (gbx), and shells of mollusks (gbx, heph) and brachiopods (heph), suggesting gene co-option for hard structure formation. Finally, a Lophotrochozoa-specific chitin synthase with a myosin motor domain (CS-MD), which is expressed during mollusk and brachiopod shell formation, had radula-specific expression in our study. CS-MD potentially facilitated the construction of complex chitinous structures and points at the potential of molecular novelties to promote the evolution of different morphological innovations. KW - chitin synthase KW - novelty KW - radula KW - RNAseq KW - shell KW - Tylomelania sarasinorum Y1 - 2018 U6 - https://doi.org/10.1093/molbev/msy052 SN - 0737-4038 SN - 1537-1719 VL - 35 IS - 7 SP - 1638 EP - 1652 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Schröder, Christiane A1 - Bleidorn, Christoph A1 - Hartmann, Stefanie A1 - Tiedemann, Ralph T1 - Occurrence of Can-SINEs and intron sequence evolution supports robust phylogeny of pinniped carnivores and their terrestrial relatives N2 - Investigating the dog genome we found 178965 introns with a moderate length of 200-1000 bp. A screening of these sequences against 23 different repeat libraries to find insertions of short interspersed elements (SINEs) detected 45276 SINEs. Virtually all of these SINEs (98%) belong to the tRNA-derived Can-SINE family. Can-SINEs arose about 55 million years ago before Carnivora split into two basal groups, the Caniformia (doglike carnivores) and the Feliformia (cat-like carnivores). Genome comparisons of dog and cat recovered 506 putatively informative SINE loci for caniformian phylogeny. In this study we show how to use such genome information of model organisms to research the phylogeny of related non-model species of interest. Investigating a dataset including representatives of all major caniformian lineages, we analysed 24 randomly chosen loci for 22 taxa. All loci were amplifiable and revealed 17 parsimony- informative SINE insertions. The screening for informative SINE insertions yields a large amount of sequence information, in particular of introns, which contain reliable phylogenetic information as well. A phylogenetic analysis of intron- and SINE sequence data provided a statistically robust phylogeny which is congruent with the absence/presence pattern of our SINE markers. This phylogeny strongly supports a sistergroup relationship of Musteloidea and Pinnipedia. Within Pinnipedia, we see strong support from bootstrapping and the presence of a SINE insertion for a sistergroup relationship of the walrus with the Otariidae. Y1 - 2009 UR - http://www.sciencedirect.com/science/journal/03781119 U6 - https://doi.org/10.1016/j.gene.2009.06.012 SN - 0378-1119 ER - TY - GEN A1 - Bleidorn, Christoph A1 - Podsiadlowski, Lars A1 - Zhong, Min A1 - Eeckhaut, Igor A1 - Hartmann, Stefanie A1 - Halanych, Kenneth M. A1 - Tiedemann, Ralph T1 - On the phylogenetic position of Myzostomida : can 77 genes get it wrong? N2 - Background: Phylogenomic analyses recently became popular to address questions about deep metazoan phylogeny. Ribosomal proteins (RP) dominate many of these analyses or are, in some cases, the only genes included. Despite initial hopes, hylogenomic analyses including tens to hundreds of genes still fail to robustly place many bilaterian taxa. Results: Using the phylogenetic position of myzostomids as an example, we show that phylogenies derived from RP genes and mitochondrial genes produce incongruent results. Whereas the former support a position within a clade of platyzoan taxa, mitochondrial data recovers an annelid affinity, which is strongly supported by the gene order data and is congruent with morphology. Using hypothesis testing, our RP data significantly rejects the annelids affinity, whereas a platyzoan relationship is significantly rejected by the mitochondrial data. Conclusion: We conclude (i) that reliance of a set of markers belonging to a single class of macromolecular complexes might bias the analysis, and (ii) that concatenation of all available data might introduce conflicting signal into phylogenetic analyses. We therefore strongly recommend testing for data incongruence in phylogenomic analyses. Furthermore, judging all available data, we consider the annelid affinity hypothesis more plausible than a possible platyzoan affinity for myzostomids, and suspect long branch attraction is influencing the RP data. However, this hypothesis needs further confirmation by future analyses. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 123 KW - Cirriferum myzostomida KW - Mitochondrial genomes KW - Transfer-rna KW - Data sets KW - Sequence Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44893 ER - TY - JOUR A1 - Sheng, Gui-Lian A1 - Basler, Nikolas A1 - Ji, Xue-Ping A1 - Paijmans, Johanna L. A. A1 - Alberti, Federica A1 - Preick, Michaela A1 - Hartmann, Stefanie A1 - Westbury, Michael V. A1 - Yuan, Jun-Xia A1 - Jablonski, Nina G. A1 - Xenikoudakis, Georgios A1 - Hou, Xin-Dong A1 - Xiao, Bo A1 - Liu, Jian-Hui A1 - Hofreiter, Michael A1 - Lai, Xu-Long A1 - Barlow, Axel T1 - Paleogenome reveals genetic contribution of extinct giant panda to extant populations JF - Current biology N2 - Historically, the giant panda was widely distributed from northern China to southwestern Asia [1]. As a result of range contraction and fragmentation, extant individuals are currently restricted to fragmented mountain ranges on the eastern margin of the Qinghai-Tibet plateau, where they are distributed among three major population clusters [2]. However, little is known about the genetic consequences of this dramatic range contraction. For example, were regions where giant pandas previously existed occupied by ancestors of present-day populations, or were these regions occupied by genetically distinct populations that are now extinct? If so, is there any contribution of these extinct populations to the genomes of giant pandas living today? To investigate these questions, we sequenced the nuclear genome of an similar to 5,000-year-old giant panda from Jiangdongshan, Teng-chong County in Yunnan Province, China. We find that this individual represents a genetically distinct population that diverged prior to the diversification of modern giant panda populations. We find evidence of differential admixture with this ancient population among modern individuals originating from different populations as well as within the same population. We also find evidence for directional gene flow, which transferred alleles from the ancient population into the modern giant panda lineages. A variable proportion of the genomes of extant individuals is therefore likely derived from the ancient population represented by our sequenced individual. Although extant giant panda populations retain reasonable genetic diversity, our results suggest that this represents only part of the genetic diversity this species harbored prior to its recent range contractions. Y1 - 2019 U6 - https://doi.org/10.1016/j.cub.2019.04.021 SN - 0960-9822 SN - 1879-0445 VL - 29 IS - 10 SP - 1695 EP - 1700 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Barlow, Axel A1 - Cahill, James A. A1 - Hartmann, Stefanie A1 - Theunert, Christoph A1 - Xenikoudakis, Georgios A1 - Gonzalez-Fortes, Gloria M. A1 - Paijmans, Johanna L. A. A1 - Rabeder, Gernot A1 - Frischauf, Christine A1 - Garcia-Vazquez, Ana A1 - Murtskhvaladze, Marine A1 - Saarma, Urmas A1 - Anijalg, Peeter A1 - Skrbinsek, Tomaz A1 - Bertorelle, Giorgio A1 - Gasparian, Boris A1 - Bar-Oz, Guy A1 - Pinhasi, Ron A1 - Slatkin, Montgomery A1 - Dalen, Love A1 - Shapiro, Beth A1 - Hofreiter, Michael T1 - Partial genomic survival of cave bears in living brown bears JF - Nature Ecology & Evolution N2 - Although many large mammal species went extinct at the end of the Pleistocene epoch, their DNA may persist due to past episodes of interspecies admixture. However, direct empirical evidence of the persistence of ancient alleles remains scarce. Here, we present multifold coverage genomic data from four Late Pleistocene cave bears (Ursus spelaeus complex) and show that cave bears hybridized with brown bears (Ursus arctos) during the Pleistocene. We develop an approach to assess both the directionality and relative timing of gene flow. We find that segments of cave bear DNA still persist in the genomes of living brown bears, with cave bears contributing 0.9 to 2.4% of the genomes of all brown bears investigated. Our results show that even though extinction is typically considered as absolute, following admixture, fragments of the gene pool of extinct species can survive for tens of thousands of years in the genomes of extant recipient species. Y1 - 2018 U6 - https://doi.org/10.1038/s41559-018-0654-8 SN - 2397-334X VL - 2 IS - 10 SP - 1563 EP - 1570 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Bonizzoni, Mariangela A1 - Bourjea, Jerome A1 - Chen, Bin A1 - Crain, B. J. A1 - Cui, Liwang A1 - Fiorentino, V. A1 - Hartmann, Stefanie A1 - Hendricks, S. A1 - Ketmaier, Valerio A1 - Ma, Xiaoguang A1 - Muths, Delphine A1 - Pavesi, Laura A1 - Pfautsch, Simone A1 - Rieger, M. A. A1 - Santonastaso, T. A1 - Sattabongkot, Jetsumon A1 - Taron, C. H. A1 - Taron, D. J. A1 - Tiedemann, Ralph A1 - Yan, Guiyun A1 - Zheng, Bin A1 - Zhong, Daibin T1 - Permanent genetic resources added to molecular ecology resources database 1 April 2011-31 May 2011 JF - Molecular ecology resources N2 - This article documents the addition of 92 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Anopheles minimus, An. sinensis, An. dirus, Calephelis mutica, Lutjanus kasmira, Murella muralis and Orchestia montagui. These loci were cross-tested on the following species: Calephelis arizonensi, Calephelis borealis, Calephelis nemesis, Calephelis virginiensis and Lutjanus bengalensis. Y1 - 2011 U6 - https://doi.org/10.1111/j.1755-0998.2011.03046.x SN - 1755-098X VL - 11 IS - 5 SP - 935 EP - 936 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Struck, Torsten H. A1 - Paul, Christiane A1 - Hill, Natascha A1 - Hartmann, Stefanie A1 - Hoesel, Christoph A1 - Kube, Michael A1 - Lieb, Bernhard A1 - Meyer, Achim A1 - Tiedemann, Ralph A1 - Purschke, Guenter A1 - Bleidorn, Christoph T1 - Phylogenomic analyses unravel annelid evolution JF - Nature : the international weekly journal of science N2 - Annelida, the ringed worms, is a highly diverse animal phylum that includes more than 15,000 described species and constitutes the dominant benthic macrofauna from the intertidal zone down to the deep sea. A robust annelid phylogeny would shape our understanding of animal body-plan evolution and shed light on the bilaterian ground pattern. Traditionally, Annelida has been split into two major groups: Clitellata (earthworms and leeches) and polychaetes (bristle worms), but recent evidence suggests that other taxa that were once considered to be separate phyla (Sipuncula, Echiura and Siboglinidae (also known as Pogonophora)) should be included in Annelida(1-4). However, the deep-level evolutionary relationships of Annelida are still poorly understood, and a robust reconstruction of annelid evolutionary history is needed. Here we show that phylogenomic analyses of 34 annelid taxa, using 47,953 amino acid positions, recovered a well-supported phylogeny with strong support for major splits. Our results recover chaetopterids, myzostomids and sipunculids in the basal part of the tree, although the position of Myzostomida remains uncertain owing to its long branch. The remaining taxa are split into two clades: Errantia (which includes the model annelid Platynereis), and Sedentaria (which includes Clitellata). Ancestral character trait reconstructions indicate that these clades show adaptation to either an errant or a sedentary lifestyle, with alteration of accompanying morphological traits such as peristaltic movement, parapodia and sensory perception. Finally, life history characters in Annelida seem to be phylogenetically informative. Y1 - 2011 U6 - https://doi.org/10.1038/nature09864 SN - 0028-0836 VL - 471 IS - 7336 SP - 95 EP - U113 PB - Nature Publ. Group CY - London ER - TY - THES A1 - Hartmann, Stefanie T1 - Phylogenomics: comparative genome analysis ursing large-scale gene family data Y1 - 2011 CY - Potsdam ER - TY - JOUR A1 - Hofreiter, Michael A1 - Hartmann, Stefanie T1 - Reconstructing protein-coding sequences from ancient DNA JF - Odorant binding and chemosensory proteins N2 - Obtaining information about functional details of proteins of extinct species is of critical importance for a better understanding of the real-life appearance, behavior and ecology of these lost entries in the book of life. In this chapter, we discuss the possibilities to retrieve the necessary DNA sequence information from paleogenomic data obtained from fossil specimens, which can then be used to express and subsequently analyze the protein of interest. We discuss the problems specific to ancient DNA, including mis-coding lesions, short read length and incomplete paleogenome assemblies. Finally, we discuss an alternative, but currently rarely used approach, direct PCR amplification, which is especially useful for comparatively short proteins. KW - re-sequencing KW - mapping KW - genome assembly KW - targeted assembly KW - SRAssembler KW - ancient DNA KW - reference sequence KW - paleogenomics Y1 - 2020 SN - 978-0-12-821157-1 U6 - https://doi.org/10.1016/bs.mie.2020.05.008 SN - 0076-6879 VL - 642 SP - 21 EP - 33 PB - Academic Press, an imprint of Elsevier CY - Cambridge, MA. ER - TY - GEN A1 - Zulawski, Monika A1 - Schulze, Gunnar A1 - Braginets, Rostyslav A1 - Hartmann, Stefanie A1 - Schulze, Waltraud X T1 - The Arabidopsis Kinome BT - phylogeny and evolutionary insights into functional diversification T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Background Protein kinases constitute a particularly large protein family in Arabidopsis with important functions in cellular signal transduction networks. At the same time Arabidopsis is a model plant with high frequencies of gene duplications. Here, we have conducted a systematic analysis of the Arabidopsis kinase complement, the kinome, with particular focus on gene duplication events. We matched Arabidopsis proteins to a Hidden-Markov Model of eukaryotic kinases and computed a phylogeny of 942 Arabidopsis protein kinase domains and mapped their origin by gene duplication. Results The phylogeny showed two major clades of receptor kinases and soluble kinases, each of which was divided into functional subclades. Based on this phylogeny, association of yet uncharacterized kinases to families was possible which extended functional annotation of unknowns. Classification of gene duplications within these protein kinases revealed that representatives of cytosolic subfamilies showed a tendency to maintain segmentally duplicated genes, while some subfamilies of the receptor kinases were enriched for tandem duplicates. Although functional diversification is observed throughout most subfamilies, some instances of functional conservation among genes transposed from the same ancestor were observed. In general, a significant enrichment of essential genes was found among genes encoding for protein kinases. Conclusions The inferred phylogeny allowed classification and annotation of yet uncharacterized kinases. The prediction and analysis of syntenic blocks and duplication events within gene families of interest can be used to link functional biology to insights from an evolutionary viewpoint. The approach undertaken here can be applied to any gene family in any organism with an annotated genome. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 861 KW - Hide Markov Model KW - Duplication Event KW - Kinase Family KW - Tandem Duplication KW - Segmental Duplication Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-432907 SN - 1866-8372 IS - 861 ER - TY - JOUR A1 - Zulawski, Monika A1 - Schulze, Gunnar A1 - Braginets, Rostyslav A1 - Hartmann, Stefanie A1 - Schulze, Waltraud X. T1 - The Arabidopsis Kinome: phylogeny and evolutionary insights into functional diversification JF - BMC genomics N2 - Background: Protein kinases constitute a particularly large protein family in Arabidopsis with important functions in cellular signal transduction networks. At the same time Arabidopsis is a model plant with high frequencies of gene duplications. Here, we have conducted a systematic analysis of the Arabidopsis kinase complement, the kinome, with particular focus on gene duplication events. We matched Arabidopsis proteins to a Hidden-Markov Model of eukaryotic kinases and computed a phylogeny of 942 Arabidopsis protein kinase domains and mapped their origin by gene duplication. Results: The phylogeny showed two major clades of receptor kinases and soluble kinases, each of which was divided into functional subclades. Based on this phylogeny, association of yet uncharacterized kinases to families was possible which extended functional annotation of unknowns. Classification of gene duplications within these protein kinases revealed that representatives of cytosolic subfamilies showed a tendency to maintain segmentally duplicated genes, while some subfamilies of the receptor kinases were enriched for tandem duplicates. Although functional diversification is observed throughout most subfamilies, some instances of functional conservation among genes transposed from the same ancestor were observed. In general, a significant enrichment of essential genes was found among genes encoding for protein kinases. Conclusions: The inferred phylogeny allowed classification and annotation of yet uncharacterized kinases. The prediction and analysis of syntenic blocks and duplication events within gene families of interest can be used to link functional biology to insights from an evolutionary viewpoint. The approach undertaken here can be applied to any gene family in any organism with an annotated genome. Y1 - 2014 U6 - https://doi.org/10.1186/1471-2164-15-548 SN - 1471-2164 VL - 15 PB - BioMed Central CY - London ER - TY - GEN A1 - Hartmann, Stefanie A1 - Vision, Todd J. T1 - Using ESTs for phylogenomics BT - can one accurately infer a phylogenetic tree from a gappy alignment? T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Background While full genome sequences are still only available for a handful of taxa, large collections of partial gene sequences are available for many more. The alignment of partial gene sequences results in a multiple sequence alignment containing large gaps that are arranged in a staggered pattern. The consequences of this pattern of missing data on the accuracy of phylogenetic analysis are not well understood. We conducted a simulation study to determine the accuracy of phylogenetic trees obtained from gappy alignments using three commonly used phylogenetic reconstruction methods (Neighbor Joining, Maximum Parsimony, and Maximum Likelihood) and studied ways to improve the accuracy of trees obtained from such datasets. Results We found that the pattern of gappiness in multiple sequence alignments derived from partial gene sequences substantially compromised phylogenetic accuracy even in the absence of alignment error. The decline in accuracy was beyond what would be expected based on the amount of missing data. The decline was particularly dramatic for Neighbor Joining and Maximum Parsimony, where the majority of gappy alignments contained 25% to 40% incorrect quartets. To improve the accuracy of the trees obtained from a gappy multiple sequence alignment, we examined two approaches. In the first approach, alignment masking, potentially problematic columns and input sequences are excluded from from the dataset. Even in the absence of alignment error, masking improved phylogenetic accuracy up to 100-fold. However, masking retained, on average, only 83% of the input sequences. In the second approach, alignment subdivision, the missing data is statistically modelled in order to retain as many sequences as possible in the phylogenetic analysis. Subdivision resulted in more modest improvements to alignment accuracy, but succeeded in including almost all of the input sequences. Conclusion These results demonstrate that partial gene sequences and gappy multiple sequence alignments can pose a major problem for phylogenetic analysis. The concern will be greatest for high-throughput phylogenomic analyses, in which Neighbor Joining is often the preferred method due to its computational efficiency. Both approaches can be used to increase the accuracy of phylogenetic inference from a gappy alignment. The choice between the two approaches will depend upon how robust the application is to the loss of sequences from the input set, with alignment masking generally giving a much greater improvement in accuracy but at the cost of discarding a larger number of the input sequences. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 889 KW - Maximum Parsimony KW - pairwise distance KW - phylogenetic inference KW - alignment error KW - Maximum Parsimony tree Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436670 SN - 1866-8372 IS - 889 ER - TY - GEN A1 - Paraskevopoulou, Sofia A1 - Dennis, Alice B. A1 - Weithoff, Guntram A1 - Hartmann, Stefanie A1 - Tiedemann, Ralph T1 - Within species expressed genetic variability and gene expression response to different temperatures in the rotifer Brachionus calyciflorus sensu stricto T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Genetic divergence is impacted by many factors, including phylogenetic history, gene flow, genetic drift, and divergent selection. Rotifers are an important component of aquatic ecosystems, and genetic variation is essential to their ongoing adaptive diversification and local adaptation. In addition to coding sequence divergence, variation in gene expression may relate to variable heat tolerance, and can impose ecological barriers within species. Temperature plays a significant role in aquatic ecosystems by affecting species abundance, spatio-temporal distribution, and habitat colonization. Recently described (formerly cryptic) species of the Brachionus calyciflorus complex exhibit different temperature tolerance both in natural and in laboratory studies, and show that B. calyciflorus sensu stricto (s.s.) is a thermotolerant species. Even within B. calyciflorus s.s., there is a tendency for further temperature specializations. Comparison of expressed genes allows us to assess the impact of stressors on both expression and sequence divergence among disparate populations within a single species. Here, we have used RNA-seq to explore expressed genetic diversity in B. calyciflorus s.s. in two mitochondrial DNA lineages with different phylogenetic histories and differences in thermotolerance. We identify a suite of candidate genes that may underlie local adaptation, with a particular focus on the response to sustained high or low temperatures. We do not find adaptive divergence in established candidate genes for thermal adaptation. Rather, we detect divergent selection among our two lineages in genes related to metabolism (lipid metabolism, metabolism of xenobiotics). T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 796 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441050 SN - 1866-8372 IS - 796 ER - TY - JOUR A1 - Paraskevopoulou, Sofia A1 - Dennis, Alice B. A1 - Weithoff, Guntram A1 - Hartmann, Stefanie A1 - Tiedemann, Ralph T1 - Within species expressed genetic variability and gene expression response to different temperatures in the rotifer Brachionus calyciflorus sensu stricto JF - PLoS ONE N2 - Genetic divergence is impacted by many factors, including phylogenetic history, gene flow, genetic drift, and divergent selection. Rotifers are an important component of aquatic ecosystems, and genetic variation is essential to their ongoing adaptive diversification and local adaptation. In addition to coding sequence divergence, variation in gene expression may relate to variable heat tolerance, and can impose ecological barriers within species. Temperature plays a significant role in aquatic ecosystems by affecting species abundance, spatio-temporal distribution, and habitat colonization. Recently described (formerly cryptic) species of the Brachionus calyciflorus complex exhibit different temperature tolerance both in natural and in laboratory studies, and show that B. calyciflorus sensu stricto (s.s.) is a thermotolerant species. Even within B. calyciflorus s.s., there is a tendency for further temperature specializations. Comparison of expressed genes allows us to assess the impact of stressors on both expression and sequence divergence among disparate populations within a single species. Here, we have used RNA-seq to explore expressed genetic diversity in B. calyciflorus s.s. in two mitochondrial DNA lineages with different phylogenetic histories and differences in thermotolerance. We identify a suite of candidate genes that may underlie local adaptation, with a particular focus on the response to sustained high or low temperatures. We do not find adaptive divergence in established candidate genes for thermal adaptation. Rather, we detect divergent selection among our two lineages in genes related to metabolism (lipid metabolism, metabolism of xenobiotics). Y1 - 2019 U6 - https://doi.org/10.1371/journal.pone.0223134 SN - 1932-6203 VL - 9 IS - 14 PB - PLoS ONE CY - San Francisco, California ER -