TY - JOUR A1 - Wanner, Manfred A1 - Seidl-Lampa, Barbara A1 - Höhn, Axel A1 - Puppe, Daniel A1 - Meisterfeld, Ralf A1 - Sommer, Michael T1 - Culture growth of testate amoebae under different silicon concentrations JF - European journal of protistology N2 - Testate amoebae with self-secreted siliceous shell platelets ("idiosomes") play an important role in terrestrial silicon (Si) cycles. In this context, Si-dependent culture growth dynamics of idiosomic testate amoebae are of interest. Clonal cultures of idiosomic testate amoebae were analyzed under three different Si concentrations: low (50 mu mol L-1), moderate/site-specific (150 mu mol L-1) and high Si supply (500 mu mol L-1). Food (Saccharomyces cerevisiae) was provided in surplus. (i) Shell size of four different clones of idiosomic testate amoebae either decreased (Trinema galeata, Euglypha filifera cf.), increased (E. rotunda cf.), or did not change (E. rotunda) under the lowest Si concentration (50 mu mol Si L-1). (ii) Culture growth of idiosomic Euglypha rotunda was dependent on Si concentration. The more Si available in the culture medium, the earlier the entry into exponential growth phase. (iii) Culture growth of idiosomic Euglypha rotunda was dependent on origin of inoculum. Amoebae previously cultured under a moderate Si concentration revealed highest sustainability in consecutive cultures. Amoebae derived from cultures with high Si concentrations showed rapid culture growth which finished early in consecutive cultures. (iv) Si (diluted in the culture medium) was absorbed by amoebae and fixed in the amoeba shells resulting in decreased Si concentrations. (C) 2016 Elsevier GmbH. All rights reserved. KW - Amoebal silicon KW - Sommer et al. 2006 KW - Biosilicification KW - Consumption KW - Culture growth dynamics KW - Euglyphida KW - Terrestrial Si cycle Y1 - 2016 U6 - https://doi.org/10.1016/j.ejop.2016.08.008 SN - 0932-4739 SN - 1618-0429 VL - 56 SP - 171 EP - 179 PB - Royal Society of Chemistry CY - Jena ER - TY - JOUR A1 - Wanner, Manfred A1 - Elmer, Michael A1 - Sommer, Michael A1 - Funk, Roger A1 - Puppe, Daniel T1 - Testate amoebae colonizing a newly exposed land surface are of airborne origin JF - Ecological indicators : integrating monitoring, assessment and management N2 - We hypothesized that at the very beginning of terrestrial ecosystem development, airborne testate amoebae play a pivotal role in facilitating organismic colonization and related soil processes. We, therefore, analyzed size and quantity of airborne testate amoebae and immigration and colonization success of airborne testate amoebae on a new land surface (experimental site "Chicken Creek", artificial post-mining water catchment). Within an altogether 91-day exposure of 70 adhesive traps, 12 species of testate amoebae were identified to be of airborne origin. Phryganella acropodia (51% of all individuals found, diameter about 35-45 mu m) and Centropyxis sphagnicola (23% of all individuals found, longest axis about 55-68 mu m), occurred most frequently in the adhesive traps. We extrapolated an aerial amoeba deposition of 61 individuals d(-1) m(-2) (living and dead individuals combined). Although it would be necessary to have a longer sequence (some additional years), our analysis of the "target substrate" of aerial immigration (catchment site) may point to a shift from a stochastic (variable) beginning of community assembly to a more deterministic (stable) course. This shift was assigned to an age of seven years of initial soil development. Although experienced specialists are necessary to conduct these time-consuming studies, the presented data suggest that terrestrial amoebae are suitable indicators for initial ecosystem development and utilization. KW - Artificial water catchment KW - Immigration by air KW - Biological indicator Y1 - 2015 U6 - https://doi.org/10.1016/j.ecolind.2014.07.037 SN - 1470-160X SN - 1872-7034 VL - 48 SP - 55 EP - 62 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Sommer, Michael A1 - Jochheim, H. A1 - Höhn, Axel A1 - Breuer, Jörn A1 - Zagorski, Z. A1 - Busse, J. A1 - Barkusky, Dietmar A1 - Meier, K. A1 - Puppe, D. A1 - Wanner, Manfred A1 - Kaczorek, Danuta T1 - Si cycling in a forest biogeosystem - the importance of transient state biogenic Si pools JF - Biogeosciences N2 - The relevance of biological Si cycling for dissolved silica (DSi) export from terrestrial biogeosystems is still in debate. Even in systems showing a high content of weatherable minerals, like Cambisols on volcanic tuff, biogenic Si (BSi) might contribute > 50% to DSi (Gerard et al., 2008). However, the number of biogeosystem studies is rather limited for generalized conclusions. To cover one end of controlling factors on DSi, i.e., weatherable minerals content, we studied a forested site with absolute quartz dominance (> 95 %). Here we hypothesise minimal effects of chemical weathering of silicates on DSi. During a four year observation period (05/2007-04/2011), we quantified (i) internal and external Si fluxes of a temperate-humid biogeosystem (beech, 120 yr) by BIOME-BGC (version ZALF), (ii) related Si budgets, and (iii) Si pools in soil and beech, chemically as well as by SEM-EDX. For the first time two compartments of biogenic Si in soils were analysed, i.e., phytogenic and zoogenic Si pool (testate amoebae). We quantified an average Si plant uptake of 35 kg Si ha(-1) yr(-1) - most of which is recycled to the soil by litterfall - and calculated an annual biosilicification from idiosomic testate amoebae of 17 kg Si ha(-1). The comparatively high DSi concentrations (6 mg L-1) and DSi exports (12 kg Si ha(-1) yr(-1)) could not be explained by chemical weathering of feldspars or quartz dissolution. Instead, dissolution of a relictic, phytogenic Si pool seems to be the main process for the DSi observed. We identified canopy closure accompanied by a disappearance of grasses as well as the selective extraction of pine trees 30 yr ago as the most probable control for the phenomena observed. From our results we concluded the biogeosystem to be in a transient state in terms of Si cycling. Y1 - 2013 U6 - https://doi.org/10.5194/bg-10-4991-2013 SN - 1726-4170 VL - 10 IS - 7 SP - 4991 EP - 5007 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Puppe, Daniel A1 - Kaczorek, Danuta A1 - Wanner, Manfred A1 - Sommer, Michael T1 - Dynamics and drivers of the protozoic Si pool along a 10-year chronosequence of initial ecosystem states JF - Ecological engineering : the journal of ecotechnology N2 - The size and dynamics of biogenic silicon (BSi) pools influence silicon (Si) fluxes from terrestrial to aquatic ecosystems. The research focus up to now was on the role of plants in Si cycling. In recent studies on old forests annual biosilicification rates of idiosomic testate amoebae (i.e. TA producing self-secreted silica shells) were shown to be of the order of Si uptake by trees. However, no comparable data exist for initial ecosystems. We analyzed the protozoic BSi pool (idiosomic TA), corresponding annual biosilicification rates and readily available and amorphous Si fractions along a 10-year chronosequence in a post-mining landscape in Brandenburg, Germany. Idiosomic Si pools ranged from 3 to 680 g Si ha(-1) and were about 3-4 times higher at vegetated compared to uncovered spots. They increased significantly with age and were related to temporal development of soil chemical properties. The calculation of annual biosilicification resulted in maxima between 2 and 16 kg Si ha(-1) with rates always higher at vegetated spots. Our results showed that the BSi pool of idiosomic TA is built up rapidly during the initial phases of ecosystem development and is strongly linked to plant growth. Furthermore, our findings highlight the importance of TA for Si cycling in young artificial ecosystems. (C) 2014 Elsevier B.V. All rights reserved. KW - Idiosomic Si pool KW - Amorphous silica KW - Terrestrial ecosystem development KW - Artificial catchment KW - Si fractions KW - Biosilicification Y1 - 2014 U6 - https://doi.org/10.1016/j.ecoleng.2014.06.011 SN - 0925-8574 SN - 1872-6992 VL - 70 SP - 477 EP - 482 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Puppe, Daniel A1 - Höhn, Axel A1 - Kaczorek, Danuta A1 - Wanner, Manfred A1 - Sommer, Michael T1 - As time goes by-Spatiotemporal changes of biogenic Si pools in initial soils of an artificial catchment in NE Germany JF - Applied soil ecology : a section of agriculture, ecosystems & environment KW - Biogenic silica KW - Diatom frustule KW - Testate amoeba shell KW - Sponge spicule KW - Initial ecosystem Y1 - 2016 U6 - https://doi.org/10.1016/j.apsoil.2016.01.020 SN - 0929-1393 SN - 1873-0272 VL - 105 SP - 9 EP - 16 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Puppe, Daniel A1 - Ehrmann, Otto A1 - Kaczorek, Danuta A1 - Wanner, Manfred A1 - Sommer, Michael T1 - The protozoic Si pool in temperate forest ecosystems - Quantification, abiotic controls and interactions with earthworms JF - Geoderma : an international journal of soil science N2 - Biogenic silicon (BSI) pools influence Si cycling in terrestrial ecosystems. As research has been focused mainly on phytogenic BSi pools until now, there is only little information available on quantities of other BSi pools. There are no systematic studies on protozoic Si pools - here represented by idiosomic testate amoebae (TA) - and abiotic and biotic influences in temperate forest ecosystems. We selected ten old forests along a strong gradient in soil forming factors (especially parent material and climate), soil properties and humus forms. We quantified idiosomic Si pools, corresponding annual biosilicification, plant-available and amorphous Si fractions of topsoil horizons. Furthermore, we analyzed the potential influences of abiotic factors (e.g. soil pH) and earthworms on idiosomic Si pools. While idiosomic Si pools were relatively small (up to 5 kg Si ha(-1)), annual biosilicification rates of living TA (17-80 kg Si ha(-1)) were comparable to or even exceeded reported data of annual Si uptake by trees. Soil pH exerted a strong, non-linear control on plant-available Si. Surprisingly, no relationship between Si supply and idiosomic Si pools could be found (no Si limitation). Instead, idiosomic Si pools showed a strong, negative relationship to earthworm biomasses, which corresponded to humus forms. We concluded that earthworms control idiosomic Si pools in forest soils by direct (feeding, competition) and/or indirect mechanisms (e.g. change of habitat structure). Earthworms themselves were strongly influenced by soil pH: Below a threshold of pH 3.8 no endogeic or anecic earthworms existed. As soil pH is a result of weathering and acidification idiosomic Si pools are indirectly, but ultimately controlled by soil forming factors, mainly parent material and climate. (C) 2014 Elsevier B.V. All rights reserved. KW - Biogenic silica KW - Testate amoebae KW - Biosilicification KW - Terrestrial Si cycle KW - Si fractions KW - Humus forms Y1 - 2015 U6 - https://doi.org/10.1016/j.geoderma.2014.12.018 SN - 0016-7061 SN - 1872-6259 VL - 243 SP - 196 EP - 204 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ehrmann, Otto A1 - Puppe, Daniel A1 - Wanner, Manfred A1 - Kaczorek, Danuta A1 - Sommer, Michael T1 - Testate amoebae in 31 mature forest ecosystems - Densities and micro-distribution in soils JF - European journal of protistology N2 - We studied testate amoebae and possible correlated abiotic factors in soils of 31 mature forest ecosystems using an easily applicable and spatially explicit method. Simple counting on soil thin-sections with a light microscope resulted in amoeba densities comparable to previously reported values, i.e. 0.1 x 10(8) to 11.5 x 10(8) individuals m(-2) (upper 3 cm of soil). Soil moisture and soil acidity seem to be correlated with amoeba densities. At sites of moderate soil moisture regimes (SMR 2-7) we found higher densities of testate amoebae at pH < 4.5. At wetter sites (SMR >= 8) higher individual densities were recorded also at less acidic sites. The in situ description of amoebae, based on the analysis of a complete soil thin-section, showed a relatively uniform spatial micro-distribution throughout the organic and mineral soil horizons (no testate amoeba clusters). We discuss the pros and cons of the soil thin-section method and suggest it as an additional tool to improve knowledge of the spatial micro-distribution of testate amoebae. KW - Microhabitats KW - Soil thin-section KW - Soil moisture regimes KW - Soil reaction Y1 - 2012 U6 - https://doi.org/10.1016/j.ejop.2012.01.003 SN - 0932-4739 VL - 48 IS - 3 SP - 161 EP - 168 PB - Elsevier CY - Jena ER -