TY - JOUR A1 - Zimmermann, Heike A1 - Stoof-Leichsenring, Kathleen R. A1 - Kruse, Stefan A1 - Nürnberg, Dirk A1 - Tiedemann, Ralf A1 - Herzschuh, Ulrike T1 - Sedimentary ancient DNA from the subarctic North Pacific BT - How sea ice, salinity, and insolation dynamics have shaped diatom composition and richness over the past 20,000 years JF - Paleoceanography and paleoclimatology N2 - We traced diatom composition and diversity through time using diatom-derived sedimentary ancient DNA (sedaDNA) from eastern continental slope sediments off Kamchatka (North Pacific) by applying a short, diatom-specific marker on 63 samples in a DNA metabarcoding approach. The sequences were assigned to diatoms that are common in the area and characteristic of cold water. SedaDNA allowed us to observe shifts of potential lineages from species of the genus Chaetoceros that can be related to different climatic phases, suggesting that pre-adapted ecotypes might have played a role in the long-term success of species in areas of changing environmental conditions. These sedaDNA results complement our understanding of the long-term history of diatom assemblages and their general relationship to environmental conditions of the past. Sea-ice diatoms (Pauliella taeniata [Grunow] Round & Basson, Attheya septentrionalis [ostrup] R. M. Crawford and Nitzschia frigida [Grunow]) detected during the late glacial and Younger Dryas are in agreement with previous sea-ice reconstructions. A positive correlation between pennate diatom richness and the sea-ice proxy IP25 suggests that sea ice fosters pennate diatom richness, whereas a negative correlation with June insolation and temperature points to unfavorable conditions during the Holocene. A sharp increase in proportions of freshwater diatoms at similar to 11.1 cal kyr BP implies the influence of terrestrial runoff and coincides with the loss of 42% of diatom sequence variants. We assume that reduced salinity at this time stabilized vertical stratification which limited the replenishment of nutrients in the euphotic zone. KW - Bacillariophyceae KW - DNA metabarcoding KW - glacial / interglacial transition KW - northwestern Pacific KW - richness KW - sedaDNA Y1 - 2021 U6 - https://doi.org/10.1029/2020PA004091 SN - 2572-4517 SN - 2572-4525 VL - 36 IS - 4 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - von Hippel, Barbara A1 - Stoof-Leichsenring, Kathleen R. A1 - Schulte, Luise A1 - Seeber, Peter Andreas A1 - Epp, Laura Saskia A1 - Biskaborn, Boris A1 - Diekmann, Bernhard A1 - Melles, Martin A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - Long-term funguseplant covariation from multi-site sedimentary ancient DNA metabarcoding JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Climate change has a major impact on arctic and boreal terrestrial ecosystems as warming leads to northward treeline shifts, inducing consequences for heterotrophic organisms associated with the plant taxa. To unravel ecological dependencies, we address how long-term climatic changes have shaped the co-occurrence of plants and fungi across selected sites in Siberia. We investigated sedimentary ancient DNA from five lakes spanning the last 47,000 years, using the ITS1 marker for fungi and the chloroplast P6 loop marker for vegetation metabarcoding. We obtained 706 unique fungal operational taxonomic units (OTUs) and 243 taxa for the plants. We show higher OTU numbers in dry forest tundra as well as boreal forests compared to wet southern tundra. The most abundant fungal taxa in our dataset are Pseudeurotiaceae, Mortierella, Sordariomyceta, Exophiala, Oidiodendron, Protoventuria, Candida vartiovaarae, Pseudeurotium, Gryganskiella fimbricystis, and Tricho-sporiella cerebriformis. The overall fungal composition is explained by the plant composition as revealed by redundancy analysis. The fungal functional groups show antagonistic relationships in their climate susceptibility. The advance of woody taxa in response to past warming led to an increase in the abun-dance of mycorrhizae, lichens, and parasites, while yeast and saprotroph distribution declined. We also show co-occurrences between Salicaceae, Larix, and Alnus and their associated pathogens and detect higher mycorrhizal fungus diversity with the presence of Pinaceae. Under future warming, we can expect feedbacks between fungus composition and plant diversity changes which will affect forest advance, species diversity, and ecosystem stability in arctic regions. KW - Ecosystem dynamics KW - Fungus -plant covariation KW - ITS marker KW - Metabarcoding KW - Sedimentary ancient DNA KW - Siberia KW - trnL P6 loop Y1 - 2022 U6 - https://doi.org/10.1016/j.quascirev.2022.107758 SN - 0277-3791 SN - 1873-457X VL - 295 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Jia, Weihan A1 - Anslan, Sten A1 - Chen, Fahu A1 - Cao, Xianyong A1 - Dong, Hailiang A1 - Dulias, Katharina A1 - Gu, Zhengquan A1 - Heinecke, Liv A1 - Jiang, Hongchen A1 - Kruse, Stefan A1 - Kang, Wengang A1 - Li, Kai A1 - Liu, Sisi A1 - Liu, Xingqi A1 - Liu, Ying A1 - Ni, Jian A1 - Schwalb, Antje A1 - Stoof-Leichsenring, Kathleen R. A1 - Shen, Wei A1 - Tian, Fang A1 - Wang, Jing A1 - Wang, Yongbo A1 - Wang, Yucheng A1 - Xu, Hai A1 - Yang, Xiaoyan A1 - Zhang, Dongju A1 - Herzschuh, Ulrike T1 - Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: overview and prospects JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - Alpine ecosystems on the Tibetan Plateau are being threatened by ongoing climate warming and intensified human activities. Ecological time-series obtained from sedimentary ancient DNA (sedaDNA) are essential for understanding past ecosystem and biodiversity dynamics on the Tibetan Plateau and their responses to climate change at a high taxonomic resolution. Hitherto only few but promising studies have been published on this topic. The potential and limitations of using sedaDNA on the Tibetan Plateau are not fully understood. Here, we (i) provide updated knowledge of and a brief introduction to the suitable archives, region-specific taphonomy, state-of-the-art methodologies, and research questions of sedaDNA on the Tibetan Plateau; (ii) review published and ongoing sedaDNA studies from the Tibetan Plateau; and (iii) give some recommendations for future sedaDNA study designs. Based on the current knowledge of taphonomy, we infer that deep glacial lakes with freshwater and high clay sediment input, such as those from the southern and southeastern Tibetan Plateau, may have a high potential for sedaDNA studies. Metabarcoding (for microorganisms and plants), metagenomics (for ecosystems), and hybridization capture (for prehistoric humans) are three primary sedaDNA approaches which have been successfully applied on the Tibetan Plateau, but their power is still limited by several technical issues, such as PCR bias and incompleteness of taxonomic reference databases. Setting up high-quality and open-access regional taxonomic reference databases for the Tibetan Plateau should be given priority in the future. To conclude, the archival, taphonomic, and methodological conditions of the Tibetan Plateau are favorable for performing sedaDNA studies. More research should be encouraged to address questions about long-term ecological dynamics at ecosystem scale and to bring the paleoecology of the Tibetan Plateau into a new era. KW - Sedimentary ancient DNA (sedaDNA) KW - Tibetan Plateau KW - Environmental DNA KW - Taphonomy KW - Ecosystem KW - Biodiversity KW - Paleoecology KW - Paleogeography Y1 - 2022 U6 - https://doi.org/10.1016/j.quascirev.2022.107703 SN - 0277-3791 SN - 1873-457X VL - 293 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Courtin, Jérémy A1 - Andreev, Andrei A1 - Raschke, Elena A1 - Bala, Sarah A1 - Biskaborn, Boris A1 - Liu, Sisi A1 - Zimmermann, Heike A1 - Diekmann, Bernhard A1 - Stoof-Leichsenring, Kathleen R. A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - Vegetation changes in Southeastern Siberia during the late pleistocene and the holocene JF - Frontiers in Ecology and Evolution N2 - Relationships between climate, species composition, and species richness are of particular importance for understanding how boreal ecosystems will respond to ongoing climate change. This study aims to reconstruct changes in terrestrial vegetation composition and taxa richness during the glacial Late Pleistocene and the interglacial Holocene in the sparsely studied southeastern Yakutia (Siberia) by using pollen and sedimentary ancient DNA (sedaDNA) records. Pollen and sedaDNA metabarcoding data using the trnL g and h markers were obtained from a sediment core from Lake Bolshoe Toko. Both proxies were used to reconstruct the vegetation composition, while metabarcoding data were also used to investigate changes in plant taxa richness. The combination of pollen and sedaDNA approaches allows a robust estimation of regional and local past terrestrial vegetation composition around Bolshoe Toko during the last similar to 35,000 years. Both proxies suggest that during the Late Pleistocene, southeastern Siberia was covered by open steppe-tundra dominated by graminoids and forbs with patches of shrubs, confirming that steppe-tundra extended far south in Siberia. Both proxies show disturbance at the transition between the Late Pleistocene and the Holocene suggesting a period with scarce vegetation, changes in the hydrochemical conditions in the lake, and in sedimentation rates. Both proxies document drastic changes in vegetation composition in the early Holocene with an increased number of trees and shrubs and the appearance of new tree taxa in the lake's vicinity. The sedaDNA method suggests that the Late Pleistocene steppe-tundra vegetation supported a higher number of terrestrial plant taxa than the forested Holocene. This could be explained, for example, by the "keystone herbivore" hypothesis, which suggests that Late Pleistocene megaherbivores were able to maintain a high plant diversity. This is discussed in the light of the data with the broadly accepted species-area hypothesis as steppe-tundra covered such an extensive area during the Late Pleistocene. KW - last glacial KW - Holocene KW - Lake Bolshoe Toko KW - paleoenvironments KW - sedimentary ancient DNA KW - metabarcoding KW - trnL KW - pollen Y1 - 2021 U6 - https://doi.org/10.3389/fevo.2021.625096 SN - 2296-701X VL - 9 PB - Frontiers Media CY - Lausanne ER -