TY - JOUR A1 - Jara, Jorge A1 - Sanchez-Reyes, Hugo A1 - Socquet, Anne A1 - Cotton, Fabrice Pierre A1 - Virieux, Jean A1 - Maksymowicz, Andrei A1 - Diaz-Mojica, John A1 - Walpersdorf, Andrea A1 - Ruiz, Javier A1 - Cotte, Nathalie A1 - Norabuena, Edmundo T1 - Kinematic study of Iquique 2014 M-w 8.1 earthquake BT - Understanding the segmentation of the seismogenic zone JF - Earth & planetary science letters N2 - We study the rupture processes of Iquique earthquake M-w 8.1 (2014/04/01) and its largest aftershock M-w 7.7 (2014/04/03) that ruptured the North Chile subduction zone. High-rate Global Positioning System (GPS) recordings and strong motion data are used to reconstruct the evolution of the slip amplitude, rise time and rupture time of both earthquakes. A two-step inversion scheme is assumed, by first building prior models for both earthquakes from the inversion of the estimated static displacements and then, kinematic inversions in the frequency domain are carried out taken into account this prior information. The preferred model for the mainshock exhibits a seismic moment of 1.73 x 10(21) Nm (M-w 8.1) and maximum slip of similar to 9 m, while the aftershock model has a seismic moment of 3.88 x 10(20) (M-w 7.7) and a maximum slip of similar to 3 m. For both earthquakes, the final slip distributions show two asperities (a shallow one and a deep one) separated by an area with significant slip deficit. This suggests a segmentation along-dip which might be related to a change of the dipping angle of the subducting slab inferred from gravimetric data. Along-strike, the areas where the seismic ruptures stopped seem to be well correlated with geological features observed from geophysical information (high-resolution bathymetry, gravimetry and coupling maps) that are representative of the long-term segmentation of the subduction margin. Considering the spatially limited portions that were broken by these two earthquakes, our results support the idea that the seismic gap is not filled yet. (C) 2018 Elsevier B.V. All rights reserved. KW - high-rate GPS KW - strong Motion KW - megathrust earthquakes KW - kinematic inversion KW - subduction segmentation Y1 - 2018 U6 - https://doi.org/10.1016/j.epsl.2018.09.025 SN - 0012-821X SN - 1385-013X VL - 503 SP - 131 EP - 143 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Jara, Jorge A1 - Sánchez-Reyes, Hugo A1 - Socquet, Anne A1 - Cotton, Fabrice Pierre A1 - Virieux, Jean A1 - Maksymowicz, Andrei A1 - Díaz-Mojica, John A1 - Walpersdorf, Andrea A1 - Ruiz, Javier A1 - Cotte, Nathalie A1 - Norabuena, Edmundo T1 - Corrigendum to: Kinematic study of Iquique 2014 Mw 8.1 earthquake: Understanding the segmentation of the seismogenic zone. - (Earth and planetary science letters. - 503 (2018) S. 131 – 143) T2 - Earth and planetary science letters N2 - We study the rupture processes of Iquique earthquake 8.1 (2014/04/01) and its largest aftershock 7.7 (2014/04/03) that ruptured the North Chile subduction zone. High-rate Global Positioning System (GPS) recordings and strong motion data are used to reconstruct the evolution of the slip amplitude, rise time and rupture time of both earthquakes. A two-step inversion scheme is assumed, by first building prior models for both earthquakes from the inversion of the estimated static displacements and then, kinematic inversions in the frequency domain are carried out taken into account this prior information. The preferred model for the mainshock exhibits a seismic moment of 1.73 × 1021 Nm ( 8.1) and maximum slip of ∼9 m, while the aftershock model has a seismic moment of 3.88 × 1020 ( 7.7) and a maximum slip of ∼3 m. For both earthquakes, the final slip distributions show two asperities (a shallow one and a deep one) separated by an area with significant slip deficit. This suggests a segmentation along-dip which might be related to a change of the dipping angle of the subducting slab inferred from gravimetric data. Along-strike, the areas where the seismic ruptures stopped seem to be well correlated with geological features observed from geophysical information (high-resolution bathymetry, gravimetry and coupling maps) that are representative of the long-term segmentation of the subduction margin. Considering the spatially limited portions that were broken by these two earthquakes, our results support the idea that the seismic gap is not filled yet. Y1 - 2018 U6 - https://doi.org/10.1016/j.epsl.2018.11.026 SN - 0012-821X SN - 1385-013X VL - 506 SP - 347 EP - 347 PB - Elsevier CY - Amsterdam ER -