TY - GEN A1 - Smith, Taylor A1 - Bookhagen, Bodo T1 - Using passive microwave data to understand spatio-temporal trends and dynamics in snow-water storage in High Mountain Asia T2 - active and passive microwave remote sensing for environmental monitoring II N2 - High Mountain Asia provides water for more than a billion downstream users. Many catchments receive the majority of their yearly water budget in the form of snow - the vast majority of which is not monitored by sparse weather networks. We leverage passive microwave data from the SSMI series of satellites (SSMI, SSMI/S, 1987-2016), reprocessed to 3.125 km resolution, to examine trends in the volume and spatial distribution of snow-water equivalent (SWE) in the Indus Basin. We find that the majority of the Indus has seen an increase in snow-water storage. There exists a strong elevation-trend relationship, where high-elevation zones have more positive SWE trends. Negative trends are confined to the Himalayan foreland and deeply-incised valleys which run into the Upper Indus. This implies a temperature-dependent cutoff below which precipitation increases are not translated into increased SWE. Earlier snowmelt or a higher percentage of liquid precipitation could both explain this cutoff.(1) Earlier work 2 found a negative snow-water storage trend for the entire Indus catchment over the time period 1987-2009 (-4 x 10(-3) mm/yr). In this study based on an additional seven years of data, the average trend reverses to 1.4 x 10(-3). This implies that the decade since the mid-2000s was likely wetter, and positively impacted long-term SWE trends. This conclusion is supported by an analysis of snowmelt onset and end dates which found that while long-term trends are negative, more recent (since 2005) trends are positive (moving later in the year).(3) KW - Passive Microwave KW - Snow KW - Climate Change KW - High Mountain Asia Y1 - 2018 SN - 978-1-5106-2160-2 U6 - https://doi.org/10.1117/12.2323827 SN - 0277-786X SN - 1996-756X VL - 10788 PB - SPIE-INT Soc Optical Engineering CY - Bellingham ER - TY - JOUR A1 - Smith, Taylor A1 - Bookhagen, Bodo T1 - Changes in seasonal snow water equivalent distribution in High Mountain Asia (1987 to 2009) JF - Science Advances N2 - Snow meltwaters account for most of the yearly water budgets of many catchments in High Mountain Asia (HMA). We examine trends in snow water equivalent (SWE) using passive microwave data (1987 to 2009). We find an overall decrease in SWE in HMA, despite regions of increased SWE in the Pamir, Kunlun Shan, Eastern Himalaya, and Eastern Tien Shan. Although the average decline in annual SWE across HMA (contributing area, 2641 x 10(3) km(2)) is low (average, -0.3%), annual SWE losses conceal distinct seasonal and spatial heterogeneities across the study region. For example, the Tien Shan has seen both strong increases in winter SWE and sharp declines in spring and summer SWE. In the majority of catchments, the most negative SWE trends are found in mid-elevation zones, which often correspond to the regions of highest snow-water storage and are somewhat distinct from glaciated areas. Negative changes in SWE storage in these mid-elevation zones have strong implications for downstream water availability. Y1 - 2018 U6 - https://doi.org/10.1126/sciadv.1701550 SN - 2375-2548 VL - 4 IS - 1 PB - American Assoc. for the Advancement of Science CY - Washington ER -