TY - JOUR A1 - Ijiri, Akira A1 - Inagaki, Fumio A1 - Kubo, Yusuke A1 - Adhikari, Rishi Ram A1 - Hattori, Shohei A1 - Hoshino, Tatsuhiko A1 - Imachi, Hiroyuki A1 - Kawagucci, Shinsuke A1 - Morono, Yuki A1 - Ohtomo, Yoko A1 - Ono, Shuhei A1 - Sakai, Sanae A1 - Takai, Ken A1 - Toki, Tomohiro A1 - Wang, David T. A1 - Yoshinaga, Marcos Y. A1 - Arnold, Gail L. A1 - Ashi, Juichiro A1 - Case, David H. A1 - Feseker, Tomas A1 - Hinrichs, Kai-Uwe A1 - Ikegawa, Yojiro A1 - Ikehara, Minoru A1 - Kallmeyer, Jens A1 - Kumagai, Hidenori A1 - Lever, Mark Alexander A1 - Morita, Sumito A1 - Nakamura, Ko-ichi A1 - Nakamura, Yuki A1 - Nishizawa, Manabu A1 - Orphan, Victoria J. A1 - Roy, Hans A1 - Schmidt, Frauke A1 - Tani, Atsushi A1 - Tanikawa, Wataru A1 - Terada, Takeshi A1 - Tomaru, Hitoshi A1 - Tsuji, Takeshi A1 - Tsunogai, Urumu A1 - Yamaguchi, Yasuhiko T. A1 - Yoshida, Naohiro T1 - Deep-biosphere methane production stimulated by geofluids in the Nankai accretionary complex JF - Science Advances Y1 - 2018 U6 - https://doi.org/10.1126/sciadv.aao4631 SN - 2375-2548 VL - 4 IS - 6 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - GEN A1 - Ijiri, Akira A1 - Inagaki, Fumio A1 - Kubo, Yusuke A1 - Adhikari, Rishi Ram A1 - Hattori, Shohei A1 - Hoshino, Tatsuhiko A1 - Imachi, Hiroyuki A1 - Kawagucci, Shinsuke A1 - Morono, Yuki A1 - Ohtomo, Yoko A1 - Ono, Shuhei A1 - Sakai, Sanae A1 - Takai, Ken A1 - Toki, Tomohiro A1 - Wang, David T. A1 - Yoshinaga, Marcos Y. A1 - Arnold, Gail L. A1 - Ashi, Juichiro A1 - Case, David H. A1 - Feseker, Tomas A1 - Hinrichs, Kai-Uwe A1 - Ikegawa, Yojiro A1 - Ikehara, Minoru A1 - Kallmeyer, Jens A1 - Kumagai, Hidenori A1 - Lever, Mark Alexander A1 - Morita, Sumito A1 - Nakamura, Ko-ichi A1 - Nakamura, Yuki A1 - Nishizawa, Manabu A1 - Orphan, Victoria J. A1 - Røy, Hans A1 - Schmidt, Frauke A1 - Tani, Atsushi A1 - Tanikawa, Wataru A1 - Terada, Takeshi A1 - Tomaru, Hitoshi A1 - Tsuji, Takeshi A1 - Tsunogai, Urumu A1 - Yamaguchi, Yasuhiko T. A1 - Yoshida, Naohiro T1 - Deep-biosphere methane production stimulated by geofluids in the Nankai accretionary complex T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Microbial life inhabiting subseafloor sediments plays an important role in Earth’s carbon cycle. However, the impact of geodynamic processes on the distributions and carbon-cycling activities of subseafloor life remains poorly constrained. We explore a submarine mud volcano of the Nankai accretionary complex by drilling down to 200 m below the summit. Stable isotopic compositions of water and carbon compounds, including clumped methane isotopologues, suggest that ~90% of methane is microbially produced at 16° to 30°C and 300 to 900 m below seafloor, corresponding to the basin bottom, where fluids in the accretionary prism are supplied via megasplay faults. Radiotracer experiments showed that relatively small microbial populations in deep mud volcano sediments (10 2 to 10 3 cells cm −3 ) include highly active hydrogenotrophic methanogens and acetogens. Our findings indicate that subduction-associated fluid migration has stimulated microbial activity in the mud reservoir and that mud volcanoes may contribute more substantially to the methane budget than previously estimated. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 802 KW - multiply-substituted isotopologues KW - marine subsurface sediments KW - carbon isotopic composition KW - submarine mud volcano KW - intact polar lipids KW - fore-arc basin KW - subseafloor sediments KW - microbial lipids KW - Cascadia margin KW - organic-acids Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427002 SN - 1866-8372 IS - 802 ER - TY - JOUR A1 - Obreht, Igor A1 - Wörmer, Lars A1 - Brauer, Achim A1 - Wendt, Jenny A1 - Alfken, Susanne A1 - De Vleeschouwer, David A1 - Elvert, Marcus A1 - Hinrichs, Kai-Uwe T1 - An annually resolved record of Western European vegetation response to Younger Dryas cooling JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - The regional patterns and timing of the Younger Dryas cooling in the North Atlantic realm were complex and are mechanistically incompletely understood. To enhance understanding of regional climate patterns, we present molecular biomarker records at subannual to annual resolution by mass spectrometry imaging (MSI) of sediments from the Lake Meerfelder Maar covering the Allerod-Younger Dryas transition. These analyses are supported by conventional extraction-based molecular-isotopic analyses, which both validate the imaging results and constrain the sources of the target compounds. The targeted fatty acid biomarkers serve as a gauge of the response of the local aquatic and terrestrial ecosystem to climate change. Based on the comparison of our data with existing data from Meerfelder Maar, we analyse the short-term environmental evolution in Western Europe during the studied time interval and confirm the previously reported delayed hydrological response to Greenland cooling. However, despite a detected delay of Western European environmental change of similar to 135 years, our biomarker data show statistically significant correlation with deuterium excess in Greenland ice core at - annual resolution during this time-transgressive cooling. This suggests a coherent atmospheric forcing across the North Atlantic realm during this transition. We propose that Western European cooling was postponed due to major reorganization of the westerlies that were intermittently forcing warmer and wetter air masses from lower latitudes to Western Europe and thus resulted in delayed cooling relative to Greenland. KW - lateglacial KW - paleoclimatology KW - Western Europe KW - Meerfelder Maar KW - high-resolution biomarkers KW - fatty acids KW - FT-ICR-MS KW - mass spectrometry KW - imaging Y1 - 2020 U6 - https://doi.org/10.1016/j.quascirev.2020.106198 SN - 0277-3791 VL - 231 PB - Elsevier CY - Amsterdam [u.a.] ER -