TY - JOUR A1 - Tramper, F. A1 - Straal, S. M. A1 - Sanyal, D. A1 - Sana, Hugues A1 - de Koter, A. A1 - Gräfener, G. A1 - Langer, N. A1 - Vink, J. S. A1 - de Mink, S. E. A1 - Kaper, L. T1 - Massive Wolf-Rayet stars on the verge to explode BT - the properties of the WO stars JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - The enigmatic oxygen-sequence Wolf-Rayet stars represent a rare stage in the evolution of massive stars. Their properties can provide unique constraints on the pre-supernova evolution of massive stars. This work presents the results of a quantitative spectroscopic analysis of the known single WO stars, with the aim to obtain the key stellar parameters and deduce their evolutionary state.X-Shooter spectra of the WO stars are modeled using the line-blanketed non-local thermal equilibrium atmosphere code cmfgen. The obtained stellar parameters show that the WO stars are very hot, with temperatures ranging from 150 kK to 210 kK. Their chemical composition is dominated by carbon (>50%), while the helium mass fraction is very low (down to 14%). Oxygen mass fractions reach as high as 25%. These properties can be reproduced with dedicated evolutionary models for helium stars, which show that the stars are post core-helium burning and very close to their eventual supernova explosion. The helium-star masses indicate initial masses or approximately 40 - 60M⊙.Thus, WO stars represent the final evolutionary stage of stars with estimated initial masses of 40 - 60M⊙. They are post core-helium burning and may explode as type Ic supernovae within a few thousand years. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-87786 SP - 109 EP - 112 ER -