TY - JOUR A1 - Munyaev, Vyacheslav O. A1 - Smirnov, Lev A. A1 - Kostin, Vasily A. A1 - Osipov, Grigory V. A1 - Pikovskij, Arkadij T1 - Analytical approach to synchronous states of globally coupled noisy rotators JF - New journal of physics : the open-access journal for physics N2 - We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed. KW - coupled rotators KW - synchronization transition KW - hysteresis KW - Kuramoto KW - model KW - noisy systems Y1 - 2020 U6 - https://doi.org/10.1088/1367-2630/ab6f93 SN - 1367-2630 VL - 22 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Vos, Joris A1 - Bobrick, Alexey A1 - Vuckovic, Maja T1 - Observed binary populations reflect the Galactic history BT - explaining the orbital period-mass ratio relation in wide hot subdwarf binaries JF - Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO) N2 - Context. Wide hot subdwarf B (sdB) binaries with main-sequence companions are outcomes of stable mass transfer from evolved red giants. The orbits of these binaries show a strong correlation between their orbital periods and mass ratios. The origins of this correlation have, so far, been lacking a conclusive explanation. Aims. We aim to find a binary evolution model which can explain the observed correlation. Methods. Radii of evolved red giants, and hence the resulting orbital periods, strongly depend on their metallicity. We performed a small but statistically significant binary population synthesis study with the binary stellar evolution code MESA. We used a standard model for binary mass loss and a standard metallicity history of the Galaxy. The resulting sdB systems were selected based on the same criteria as was used in observations and then compared with the observed population. Results. We have achieved an excellent match to the observed period-mass ratio correlation without explicitly fine-tuning any parameters. Furthermore, our models produce a very good match to the observed period-metallicity correlation. We predict several new correlations, which link the observed sdB binaries to their progenitors, and a correlation between the orbital period, metallicity, and core mass for subdwarfs and young low-mass helium white dwarfs. We also predict that sdB binaries have distinct orbital properties depending on whether they formed in the Galactic bulge, thin or thick disc, or the halo. Conclusions We demonstrate, for the first time, how the metallicity history of the Milky Way is imprinted in the properties of the observed post-mass transfer binaries. We show that Galactic chemical evolution is an important factor in binary population studies of interacting systems containing at least one evolved low-mass (M-init< 1.6 M-circle dot) component. Finally, we provide an observationally supported model of mass transfer from low-mass red giants onto main-sequence stars. KW - binaries: spectroscopic KW - stars: evolution KW - stars: mass-loss KW - subdwarfs KW - Galaxy: evolution Y1 - 2020 U6 - https://doi.org/10.1051/0004-6361/201937195 SN - 1432-0746 VL - 641 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Bsdok, Barbara A1 - Altenberger, Uwe A1 - Concha-Perdomo, Ana Elena A1 - Wilke, Franziska Daniela Helena A1 - Gil-Rodriguez, J. G. T1 - The Santa Rosa de Viterbo meteorite, Colombia BT - New work on it's petrological, geochemical and economical characterization JF - Journal of South American earth sciences N2 - Undifferentiated meteorites, like primitive chondrites, can contain presolar and solar nebula materials which would provide information about the origin and initial conditions of the solar system, whereas differentiated meteorites like iron meteorites, can show early phases of planetary accretion. They also provide the possibility to receive information about core properties and planetary bodies. In addition to the gain in such fundamental scientific knowledge both types are of interest for the exploration of critical raw materials (CRMs) and precious elements. The Santa Rosa de Viterbo meteorite shower, discovered 1810 in the Boyaca province of Colombia, represents a typical iron-nickel meteorite. The present study presents new structural, textural and geochemical results of one fragment of this meteorite, using reflecting microscopy, electron probe micro analyses (EPMA) and electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). The present study presents trace element concentrations of the meteorite's minerals for the first time. The sample is dominated by kamacite (alpha-FeNi). Schreibersite (FeNi3P), taenite (gamma-FeNi) and plessite (mixture of kamacite and taenite) are minor constituents. The occurrence of cohenite ((Fe,Ni,Co)(3)C) and troilite (FeS) are likely. The meteorite sample contains classical Neuman bands passing through kamacite and frequent Widmanstadtten pattern. The bandwidth of kamacite defines the meteorite as finest octahedrite. Geochemically, it is characterized as a "Type IC meteorite". While improving the characterization and classification of the Santa Rosa de Viterbo Iron Meteorite, notable concentrations of Au (>400 ppm) and Ge (>230 ppm) alongside major elements such as Fe, Ni and Co in the bulk composition of that meteorite, were proven. Major and rock-forming minerals such as kamacite and taenite incorporate hundreds of ppm of Ge whereas schreibersite, itself a minor component in that particular meteorite, is the major source for Au (>1400 ppm). In kamacite and taenite also Ir, Pd and Ga were found in minor amounts. Nano-scale inclusions or atomic clusters called nano-nuggets may have been responsible for the high concentrations of Au, Ir, Pd and Ga. Raman and Laser-induced plasma spectroscopes installed in in space probes seems suitable exploration methods for Fe-Ni meteorites, containing Ni-concentrations > 5.8 wt% defining the meteorite as octaedrites. KW - Fe-Ni-Meteorite KW - Geochemistry KW - Colombia KW - Gold KW - Rare elements KW - Space mining Y1 - 2020 U6 - https://doi.org/10.1016/j.jsames.2020.102779 SN - 0895-9811 VL - 104 PB - Elsevier Science CY - Amsterdam ER - TY - JOUR A1 - Liu, Ruoyu A1 - Yan, Huirong T1 - On the unusually large spatial extent of the TeV nebula HESS J1825-137 BT - implication from the energy-dependent morphology JF - Monthly notices of the Royal Astronomical Society N2 - Deep observation of the High Energy Stereoscopic System (HESS) on the most extended pulsar wind nebula HESS J1825-137 reveals an enhanced energy-dependent morphology, providing useful information on the particle transport mechanism in the nebula. We find that the energy-dependent morphology is consistent with a diffusion-dominated transport of electrons/positrons. It provides an alternative possible interpretation for the unusually large spatial extent (i.e. greater than or similar to 100 pc) of the nebula, which could then be attributed to the diffusion of escaping electrons/positrons from a compact plerion. The influence of various model parameters on the energy-dependent extent of the nebula is studied in the diffusion-dominated scenario. We also show that the energy-dependent morphology of the nebula may also be used to study the spin-down history of the pulsar. KW - diffusion-radation mechanisms KW - non-thermal-pulsars KW - individual KW - HESS J1825-137 gamma-rays KW - general Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa911 SN - 0035-8711 SN - 1365-2966 VL - 494 IS - 2 SP - 2618 EP - 2627 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Capała, Karol A1 - Padash, Amin A1 - Chechkin, Aleksei V. A1 - Shokri, Babak A1 - Metzler, Ralf A1 - Dybiec, Bartłomiej T1 - Levy noise-driven escape from arctangent potential wells JF - Chaos : an interdisciplinary journal of nonlinear science N2 - The escape from a potential well is an archetypal problem in the study of stochastic dynamical systems, representing real-world situations from chemical reactions to leaving an established home range in movement ecology. Concurrently, Levy noise is a well-established approach to model systems characterized by statistical outliers and diverging higher order moments, ranging from gene expression control to the movement patterns of animals and humans. Here, we study the problem of Levy noise-driven escape from an almost rectangular, arctangent potential well restricted by two absorbing boundaries, mostly under the action of the Cauchy noise. We unveil analogies of the observed transient dynamics to the general properties of stationary states of Levy processes in single-well potentials. The first-escape dynamics is shown to exhibit exponential tails. We examine the dependence of the escape on the shape parameters, steepness, and height of the arctangent potential. Finally, we explore in detail the behavior of the probability densities of the first-escape time and the last-hitting point. Y1 - 2020 U6 - https://doi.org/10.1063/5.0021795 SN - 1054-1500 SN - 1089-7682 VL - 30 IS - 12 PB - American Institute of Physics CY - Woodbury, NY ER - TY - JOUR A1 - Assagra, Yuri A.O. A1 - Altafim, Ruy Alberto Pisani A1 - do Carmo, Joao P. A1 - Altafim, Ruy A.C. A1 - Rychkov, Dmitry A1 - Wirges, Werner A1 - Gerhard, Reimund T1 - A new route to piezo-polymer transducers: 3D printing of polypropylene ferroelectrets JF - IEEE transactions on dielectrics and electrical insulation N2 - Here, a promising approach for producing piezo-polymer transducers in a one-step process is presented. Using 3D-printing technology and polypropylene (PP) filaments, we are able to print a two-layered film structure with regular cavities of precisely controlled size and shape. It is found that the 3D-printed samples exhibit piezoelectric coefficients up to 200 pC/N, similar to those of other PP ferroelectrets, and their temporal and thermal behavior is in good agreement with those known of PP ferroelectrets. The piezoelectric response strongly decreases for applied pressures above 20 kPa, as the pressure in the air-filled cavities strongly influences the overall elastic modulus of ferroelectrets. KW - 3D printing KW - polymer ferroelectrets KW - sensors and actuators KW - piezoelectrets KW - electret polymers KW - soft electro-active materials KW - functional materials KW - soft matter Y1 - 2020 U6 - https://doi.org/10.1109/TDEI.2020.008461 SN - 1070-9878 SN - 1558-4135 VL - 27 IS - 5 SP - 1668 EP - 1674 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Crovetto, Andrea A1 - Hempel, Hannes A1 - Rusu, Marin A1 - Choubrac, Leo A1 - Kojda, Sandrino Danny A1 - Habicht, Klaus A1 - Unold, Thomas T1 - Water adsorption enhances electrical conductivity in transparent p-type CuI JF - ACS applied materials & interfaces N2 - CuI has been recently rediscovered as a p-type transparent conductor with a high figure of merit. Even though many metal iodides are hygroscopic, the effect of moisture on the electrical properties of CuI has not been clarified. In this work, we observe a 2-fold increase in the conductivity of CuI after exposure to ambient humidity for 5 h, followed by slight long-term degradation. Simultaneously, the work function of CuI decreases by almost 1 eV, which can explain the large spread in the previously reported work function values. The conductivity increase is partially reversible and is maximized at intermediate humidity levels. On the basis of the large intragrain mobility measured by THz spectroscopy, we suggest that hydration of grain boundaries may be beneficial for the overall hole mobility. KW - transparent conductors KW - CuI KW - copper iodide KW - conductivity KW - humidity KW - p-type KW - work function Y1 - 2020 U6 - https://doi.org/10.1021/acsami.0c11040 SN - 1944-8244 SN - 1944-8252 VL - 12 IS - 43 SP - 48741 EP - 48747 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Vollbrecht, Joachim A1 - Brus, Viktor V. T1 - On the recombination order of surface recombination under open circuit conditions JF - Organic electronics : physics, materials and applications N2 - Understanding the recombination dynamics of organic and perovskite solar cells has been a crucial prerequisite in the steadily increasing performance of these promising new types of photovoltaics. Surface recombination in particular has turned out to be one of the last remaining roadblocks, which specifically reduces the open circuit voltage. In this study, the relationship between the rate of surface recombination and the density of charge carriers is analyzed, revealing a cubic dependence between these two parameters. This hypothesis is then tested and verified with the recombination dynamics of an organic solar cell known to exhibit significant surface recombination and a high energy proton irradiated CH3NH3PbI3 pemvskite solar cell during white light illumination. Incidentally, these results can also explain recombination orders exceeding the commonly known threshold for bimolecular recombination that have been observed in some studies without the need for a charge carrier dependent bimolecular recombination coefficient. KW - surface recombination KW - recombination order KW - organic photovoltaics KW - Perovskite solar cells KW - charge carrier density KW - Shockley-Read-Hall KW - statistics Y1 - 2020 U6 - https://doi.org/10.1016/j.orgel.2020.105905 SN - 1566-1199 SN - 1878-5530 VL - 86 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Fernandez, Ricardo A1 - Gonzalez-Doncel, Gaspar A1 - Garces, Gerardo A1 - Bruno, Giovanni T1 - Towards a comprehensive understanding of creep BT - microstructural dependence of the pre-exponential term in Al JF - Materials science & engineering. A, Structural materials: properties, microstructure and processing N2 - We show that the equation proposed by Takeuchi and Argon to explain the creep behavior of Al-Mg solid solution can be used to describe also the creep behavior of pure aluminum. In this frame, it is possible to avoid the use of the classic pre-exponential fitting parameter in the power law equation to predict the minimum creep strain rate. The effect of the fractal arrangement of dislocations, developed at the mesoscale, must be considered to fully explain the experimental data. These ideas allow improving the recently introduced SSTC model, fully describing the primary and secondary creep regimes of aluminum alloys without the need for fitting. Creep data from commercially pure A199.8% and Al-Mg alloys tested at different temperatures and stresses are used to validate the proposed ideas. KW - creep KW - Aluminum alloys KW - dislocations KW - fractal KW - stress exponent Y1 - 2020 U6 - https://doi.org/10.1016/j.msea.2020.139036 SN - 0921-5093 SN - 1873-4936 VL - 776 PB - Elsevier CY - Lausanne ER - TY - JOUR A1 - Samajdar, Anuradha A1 - Dietrich, Tim T1 - Constructing Love-Q relations with gravitational wave detections JF - Physical review : D, Particles, fields, gravitation, and cosmology N2 - Quasiuniversal relations between the tidal deformability and the quadrupole moment of neutron stars are predicted by theoretical computations, but have not been measured experimentally. We simulate 120 binary neutron star sources and find that Advanced LIGO and Advanced Virgo at design sensitivity could find possible deviations from predicted relations if the neutron stars are highly spinning. A network of envisaged third generation detectors will even allow extracting such relations, providing new tests of general relativity and nuclear physics predictions. Y1 - 2020 U6 - https://doi.org/10.1103/PhysRevD.101.124014 SN - 1550-7998 SN - 1550-2368 VL - 101 IS - 12 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Poudel, Amit A1 - Tichy, Wolfgang A1 - Brügmann, Bernd A1 - Dietrich, Tim T1 - Increasing the accuracy of binary neutron star simulations with an improved vacuum treatment JF - Physical review : D, Particles, fields, gravitation, and cosmology N2 - Numerical-relativity simulations are essential for studying the last stages of the binary neutron star coalescence. Unfortunately, for stable simulations there is the need to add an artificial low-density atmosphere. Here we discuss a new framework in which we can effectively set the density surrounding the neutron stars to zero to ensure a more accurate simulation. We test our method with a number of single star test cases and for an equal-mass binary neutron star simulation. While the bulk motion of the system is not influenced, and hence there is no improvement with respect to the emitted gravitational-wave signal, we find that the new approach is superior with respect to mass conservation and it allows a much better tracking of outward moving material. This will allow a more accurate simulation of the ejected material and supports the interpretation of present and future multimessenger observations with more accurate numerical-relativity simulations. Y1 - 2020 U6 - https://doi.org/10.1103/PhysRevD.102.104014 SN - 2470-0010 SN - 2470-0029 VL - 102 IS - 10 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Rosenau, Philip A1 - Pikovskij, Arkadij T1 - Solitary phase waves in a chain of autonomous oscillators JF - Chaos : an interdisciplinary journal of nonlinear science N2 - In the present paper, we study phase waves of self-sustained oscillators with a nearest-neighbor dispersive coupling on an infinite lattice. To analyze the underlying dynamics, we approximate the lattice with a quasi-continuum (QC). The resulting partial differential model is then further reduced to the Gardner equation, which predicts many properties of the underlying solitary structures. Using an iterative procedure on the original lattice equations, we determine the shapes of solitary waves, kinks, and the flat-like solitons that we refer to as flatons. Direct numerical experiments reveal that the interaction of solitons and flatons on the lattice is notably clean. All in all, we find that both the QC and the Gardner equation predict remarkably well the discrete patterns and their dynamics. Y1 - 2020 U6 - https://doi.org/10.1063/1.5144939 SN - 1054-1500 SN - 1089-7682 VL - 30 IS - 5 PB - American Institute of Physics, AIP CY - Melville, NY ER - TY - JOUR A1 - Cabalar, Pedro A1 - Fandinno, Jorge A1 - Lierler, Yuliya T1 - Modular Answer Set Programming as a formal specification language JF - Theory and practice of logic programming N2 - In this paper, we study the problem of formal verification for Answer Set Programming (ASP), namely, obtaining aformal proofshowing that the answer sets of a given (non-ground) logic programPcorrectly correspond to the solutions to the problem encoded byP, regardless of the problem instance. To this aim, we use a formal specification language based on ASP modules, so that each module can be proved to capture some informal aspect of the problem in an isolated way. This specification language relies on a novel definition of (possibly nested, first order)program modulesthat may incorporate local hidden atoms at different levels. Then,verifyingthe logic programPamounts to prove some kind of equivalence betweenPand its modular specification. KW - Answer Set Programming KW - formal specification KW - formal verification KW - modular logic programs Y1 - 2020 U6 - https://doi.org/10.1017/S1471068420000265 SN - 1471-0684 SN - 1475-3081 VL - 20 IS - 5 SP - 767 EP - 782 PB - Cambridge University Press CY - New York ER - TY - JOUR A1 - Schneider, Sebastian A1 - Hoffmann-Vogel, Regina T1 - Electrostatic forces above graphene nanoribbons and edges interpreted as partly hydrogen-free JF - Nanoscale N2 - Graphene nanoribbons' electronic transport properties strongly depend on the type of edge, armchair, zigzag or other, and on edge functionalization that can be used for band-gap engineering. For only partly hydrogenated edges interesting magnetic properties are predicted. Electric charge accumulates at edges and corners. Scanning force microscopy has so far shown the centre of graphene nanoribbons with atomic resolution using a quartz crystal tuning fork sensor of high stiffness. Weak long-range electrostatic forces related to the charge accumulation on the edges of graphene nanoribbons could not be imaged so far. Here, we show the electrostatic forces at the corners and edges of graphene nanoribbons are amenable to measurement. We use soft cantilevers and a bimodal imaging technique to combine enhanced sensitivity to weak long-range electrostatic forces with the high resolution of the second-frequency shift. Additionally, in our work the edges of the nanoribbons are mainly hydrogen-free, opening to the route to investigations of partly hydrogenated magnetic nanoribbons. Y1 - 2020 U6 - https://doi.org/10.1039/d0nr03348k SN - 2040-3364 SN - 2040-3372 VL - 12 IS - 34 SP - 17895 EP - 17901 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Caesar, Levke A1 - Rahmstorf, Stefan A1 - Feulner, Georg T1 - On the relationship between Atlantic meridional overturning circulation slowdown and global surface warming JF - Environmental research letters N2 - According to established understanding, deep-water formation in the North Atlantic and Southern Ocean keeps the deep ocean cold, counter-acting the downward mixing of heat from the warmer surface waters in the bulk of the world ocean. Therefore, periods of strong Atlantic meridional overturning circulation (AMOC) are expected to coincide with cooling of the deep ocean and warming of the surface waters. It has recently been proposed that this relation may have reversed due to global warming, and that during the past decades a strong AMOC coincides with warming of the deep ocean and relative cooling of the surface, by transporting increasingly warmer waters downward. Here we present multiple lines of evidence, including a statistical evaluation of the observed global mean temperature, ocean heat content, and different AMOC proxies, that lead to the opposite conclusion: even during the current ongoing global temperature rise a strong AMOC warms the surface. The observed weakening of the AMOC has therefore delayed global surface warming rather than enhancing it. Social Media Abstract: The overturning circulation in the Atlantic Ocean has weakened in response to global warming, as predicted by climate models. Since it plays an important role in transporting heat, nutrients and carbon, a slowdown will affect global climate processes and the global mean temperature. Scientists have questioned whether this slowdown has worked to cool or warm global surface temperatures. This study analyses the overturning strength and global mean temperature evolution of the past decades and shows that a slowdown acts to reduce the global mean temperature. This is because a slower overturning means less water sinks into the deep ocean in the subpolar North Atlantic. As the surface waters are cold there, the sinking normally cools the deep ocean and thereby indirectly warms the surface, thus less sinking implies less surface warming and has a cooling effect. For the foreseeable future, this means that the slowing of the overturning will likely continue to slightly reduce the effect of the general warming due to increasing greenhouse gas concentrations. KW - Atlantic meridional overturning circulation KW - global surface warming KW - ocean heat uptake Y1 - 2020 U6 - https://doi.org/10.1088/1748-9326/ab63e3 SN - 1748-9326 VL - 15 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Xu, Pengbo A1 - Deng, Weihua A1 - Sandev, Trifce T1 - Levy walk with parameter dependent velocity BT - hermite polynomial approach and numerical simulation JF - Journal of physics : A, Mathematical and theoretical N2 - To analyze stochastic processes, one often uses integral transform (Fourier and Laplace) methods. However, for the time-space coupled cases, e.g. the Levy walk, sometimes the integral transform method may fail. Here we provide a Hermite polynomial expansion approach, being complementary to the integral transform method, to the Levy walk. Two approaches are compared for some already known results. We also consider the generalized Levy walk with parameter dependent velocity. Namely, we consider the Levy walk with velocity which depends on the walking length or on the duration of each step. Some interesting features of the generalized Levy walk are observed, including the special shapes of the probability density function, the first passage time distributions, and various diffusive behaviors of the mean squared displacement. KW - Hermite polynomial expansion KW - Levy walk KW - anomalous diffusion KW - parameter KW - dependent velocity Y1 - 2020 U6 - https://doi.org/10.1088/1751-8121/ab7420 SN - 1751-8113 SN - 1751-8121 VL - 53 IS - 11 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Sydow, Benjamin A1 - Thiede, Tobias A1 - Sizova, Irina A1 - Ulbricht, Alexander A1 - Bambach, Markus A1 - Bruno, Giovanni T1 - Residual stress and microstructure of a Ti-6Al-4V Wire Arc Additive Manufacturing hybrid demonstrator JF - Metals N2 - Wire Arc Additive Manufacturing (WAAM) features high deposition rates and, thus, allows production of large components that are relevant for aerospace applications. However, a lot of aerospace parts are currently produced by forging or machining alone to ensure fast production and to obtain good mechanical properties; the use of these conventional process routes causes high tooling and material costs. A hybrid approach (a combination of forging and WAAM) allows making production more efficient. In this fashion, further structural or functional features can be built in any direction without using additional tools for every part. By using a combination of forging basic geometries with one tool set and adding the functional features by means of WAAM, the tool costs and material waste can be reduced compared to either completely forged or machined parts. One of the factors influencing the structural integrity of additively manufactured parts are (high) residual stresses, generated during the build process. In this study, the triaxial residual stress profiles in a hybrid WAAM part are reported, as determined by neutron diffraction. The analysis is complemented by microstructural investigations, showing a gradient of microstructure (shape and size of grains) along the part height. The highest residual stresses were found in the transition zone (between WAAM and forged part). The total stress range showed to be lower than expected for WAAM components. This could be explained by the thermal history of the component. KW - residual stress KW - WAAM KW - Ti-6Al-4V KW - additive manufacturing KW - neutron KW - diffraction KW - hybrid manufacturing Y1 - 2020 U6 - https://doi.org/10.3390/met10060701 SN - 2075-4701 VL - 10 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Sajedi, Maryam A1 - Krivenkov, Maxim A1 - Marchenko, Dmitry A1 - Varykhalov, Andrei A1 - Sanchez-Barriga, Jaime A1 - Rienks, Emile D. L. A1 - Rader, Oliver T1 - Absence of a giant Rashba effect in the valence band of lead halide perovskites JF - Physical review : B, Condensed matter and materials physics N2 - For hybrid organic-inorganic as well as all-inorganic lead halide perovskites a Rashba effect has been invoked to explain the high efficiency in energy conversion by prohibiting direct recombination. Both a bulk and surface Rashba effect have been predicted. In the valence band of methylammonium (MA) lead bromide a Rashba effect has been reported by angle-resolved photoemission and circular dichroism with giant values of 7-11 eV angstrom. We present band dispersion measurements of MAPbBr(3) and spin-resolved photoemission of CsPbBr3 to show that a large Rashba effect detectable by photoemission or circular dichroism does not exist and cannot be the origin of the high effciency. Y1 - 2020 U6 - https://doi.org/10.1103/PhysRevB.102.081116 SN - 2469-9950 SN - 2469-9969 VL - 102 IS - 8 PB - American Institute of Physics; American Physical Society (APS) CY - Woodbury, NY ER - TY - JOUR A1 - Caetano, Daniel L. Z. A1 - Carvalho, Sidney Jurado de A1 - Metzler, Ralf A1 - Cherstvy, Andrey G. T1 - Critical adsorption of multiple polyelectrolytes onto a nanosphere BT - splitting the adsorption-desorption transition boundary JF - Interface : journal of the Royal Society N2 - Employing extensive Monte Carlo computer simulations, we investigate in detail the properties of multichain adsorption of charged flexible polyelectrolytes (PEs) onto oppositely charged spherical nanoparticles (SNPs). We quantify the conditions of critical adsorption-the phase-separation curve between the adsorbed and desorbed states of the PEs-as a function of the SNP surface-charge density and the concentration of added salt. We study the degree of fluctuations of the PE-SNP electrostatic binding energy, which we use to quantify the emergence of the phase subtransitions, including a series of partially adsorbed PE configurations. We demonstrate how the phase-separation adsorption-desorption boundary shifts and splits into multiple subtransitions at low-salt conditions, thereby generalizing and extending the results for critical adsorption of a single PE onto the SNP. The current findings are relevant for finite concentrations of PEs around the attracting SNP, such as the conditions for PE adsorption onto globular proteins carrying opposite electric charges. KW - nanoparticles KW - polyelectrolytes KW - electrostatics KW - critical adsorption KW - phase-transition boundary Y1 - 2020 U6 - https://doi.org/10.1098/rsif.2020.0199 SN - 1742-5689 SN - 1742-5662 VL - 17 IS - 167 PB - Royal Society CY - London ER - TY - JOUR A1 - Stojkoski, Viktor A1 - Sandev, Trifce A1 - Basnarkov, Lasko A1 - Kocarev, Ljupco A1 - Metzler, Ralf T1 - Generalised geometric Brownian motion BT - theory and applications to option pricing JF - Entropy N2 - Classical option pricing schemes assume that the value of a financial asset follows a geometric Brownian motion (GBM). However, a growing body of studies suggest that a simple GBM trajectory is not an adequate representation for asset dynamics, due to irregularities found when comparing its properties with empirical distributions. As a solution, we investigate a generalisation of GBM where the introduction of a memory kernel critically determines the behaviour of the stochastic process. We find the general expressions for the moments, log-moments, and the expectation of the periodic log returns, and then obtain the corresponding probability density functions using the subordination approach. Particularly, we consider subdiffusive GBM (sGBM), tempered sGBM, a mix of GBM and sGBM, and a mix of sGBMs. We utilise the resulting generalised GBM (gGBM) in order to examine the empirical performance of a selected group of kernels in the pricing of European call options. Our results indicate that the performance of a kernel ultimately depends on the maturity of the option and its moneyness. KW - geometric Brownian motion KW - Fokker– Planck equation KW - Black– Scholes model KW - option pricing Y1 - 2020 U6 - https://doi.org/10.3390/e22121432 SN - 1099-4300 VL - 22 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Umlandt, Maren A1 - Feldmann, David A1 - Schneck, Emanuel A1 - Santer, Svetlana A1 - Bekir, Marek T1 - Adsorption of photoresponsive surfactants at solid-liquid interfaces JF - Langmuir N2 - We report on the adsorption kinetics of azoben-zene-containing surfactants on solid surfaces of different hydrophobicity. The understanding of this processes is of great importance for many interfacial phenomena that can be actuated and triggered by light, since the surfactant molecules contain a photoresponsive azobenzene group in their hydrophobic tail. Three surfactant types are studied, differing in the spacer connecting the headgroup and the azobenzene unit by between 6 and 10 CH2 groups. Under irradiation with light of a suitable wavelength, the azobenzene undergoes reversible photoisomerization between two states, a nonpolar trans-state and a highly polar cis-state. Consequently, the surfactant molecule changes its hydrophobicity and thus affinity to a surface depending on the photoisomerization state of the azobenzene. The adsorption behavior on hydrophilic (glass) and hydrophobic (TeflonAF) surfaces is analyzed using quartz crystal microbalance with dissipation (QCM-D) and zeta-potential measurements. At equilibrium, the adsorbed surfactant amount is almost twice as large on glass compared to TeflonAF for both isomers. The adsorption rate for the trans-isomers on both surfaces is similar, but the desorption rate of the trans-isomers is faster at the glass-water interface than at the Teflon-water interface. This result demonstrates that the trans-isomers have higher affinity for the glass surface, so the trans-to-cis ratios on glass and TeflonAF are 80/1 and 2/1, respectively, with similar trends for all three surfactant types. Y1 - 2020 U6 - https://doi.org/10.1021/acs.langmuir.0c02545 SN - 0743-7463 SN - 1520-5827 VL - 36 IS - 46 SP - 14009 EP - 14018 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kuentzer, Felipe A. A1 - Juracy, Leonardo R. A1 - Moreira, Matheus T. A1 - Amory, Alexandre M. T1 - Testing the blade resilient asynchronous template JF - Analog integrated circuits and signal processing : an international journal N2 - As VLSI design moves into ultra-deep-submicron technologies, timing margins added to the clock period are mandatory, to ensure correct circuit behavior under worst-case conditions. Timing resilient architectures emerged as a promising solution to alleviate these worst-case timing margins. These architectures allow improving system performance and reducing energy consumption. Asynchronous systems, on the other hand, have the potential to improve energy efficiency and performance. Blade is an asynchronous timing resilient template that leverages the advantages of both asynchronous and timing resilient techniques. However, Blade still presents challenges regarding its testability, which hinders its commercial or large-scale application. This paper demonstrates that scan chains can be prohibitive for Blade due to their high silicon costs., which can reach more than 100%. Then, it proposes an alternative test approach that allows concurrent testing, stuck-at, and delay testing. The test approach is based on the reuse the Blade features to provide testability, with silicon area overheads between 4 and 7%. KW - asynchronous design KW - blade KW - delay faults KW - design for Testability KW - stuck-at faults KW - timing resilient design Y1 - 2020 U6 - https://doi.org/10.1007/s10470-020-01651-8 SN - 0925-1030 SN - 1573-1979 VL - 106 IS - 1 SP - 219 EP - 234 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Wang, Jingwen A1 - Rychkov, Dmitry A1 - Nguyen, Quyet Doan A1 - Gerhard, Reimund T1 - Unexpected bipolar space-charge polarization across transcrystalline interfaces in polypropylene electret films JF - Journal of applied physics N2 - A double-layer transcrystalline polypropylene (PP) film with a flat central interface layer between its two transcrystalline layers is obtained by recrystallization from the melt between two polytetrafluoroethylene (PTFE) surfaces on both sides of the PP film. Its electret properties are studied and compared with those of a single-layer transcrystalline PP film re-crystallized in contact with only one PTFE surface. Within experimental uncertainty, the two types of transcrystalline films exhibit the same thermal properties and crystallinities. After thermal poling, however, two hetero-charge layers of opposite polarity are found on the internal interfaces of the double-layer transcrystalline films and may together be considered as micrometer-sized dipoles. The unexpected phenomenon does not occur in single-layer transcrystalline samples without a central interface layer, suggesting that the interfaces between the transcrystalline layers and the micrometer-thick central interface layer may be the origin of deeper traps rather than the crystalline structures in the transcrystallites or the spherulites. The origin of the interfacial charges was also studied by means of an injection-blocking charging method, which revealed that intrinsic charge carriers introduced during recrystallization are most likely responsible for the interfacial charges. It is fascinating that a material as familiar as PP can exhibit such intriguing properties with a special bipolar space-charge polarization across the central interface layer after quasi-epitaxial surface moulding into a double-layer transcrystalline form. In addition to applications in electret (micro-)devices for electro-mechanical transduction, the highly ordered structures may also be employed as a new paradigm for studying charge storage and transport in polymer electrets and in dielectrics for DC electrical insulation. Y1 - 2020 U6 - https://doi.org/10.1063/5.0022071 SN - 0021-8979 SN - 1089-7550 VL - 128 IS - 13 PB - American Institute of Physics, AIP CY - Melville, NY ER - TY - JOUR A1 - Simonova, Maria A1 - Ivanov, Ivan A1 - Meleshko, Tamara A1 - Kopyshev, Alexey A1 - Santer, Svetlana A1 - Yakimansky, Alexander A1 - Filippov, Alexander T1 - Self-assembly of molecular brushes with polyimide backbone and amphiphilic block copolymer side chains in selective solvents JF - Polymers N2 - Three-component molecular brushes with a polyimide backbone and amphiphilic block copolymer side chains with different contents of the "inner" hydrophilic (poly(methacrylic acid)) and "outer" hydrophobic (poly(methyl methacrylate)) blocks were synthesized and characterized by molecular hydrodynamics and optics methods in solutions of chloroform, dimethylformamide, tetrahydrofuran and ethanol. The peculiarity of the studied polymers is the amphiphilic structure of the grafted chains. The molar masses of the molecular brushes were determined by static and dynamic light scattering in chloroform in which polymers form molecularly disperse solutions. Spontaneous self-assembly of macromolecules was detected in dimethylformamide, tetrahydrofuran and ethanol. The aggregates size depended on the thermodynamic quality of the solvent as well as on the macromolecular architectural parameters. In dimethylformamide and tetrahydrofuran, the distribution of hydrodynamic radii of aggregates was bimodal, while in ethanol, it was unimodal. Moreover, in ethanol, an increase in the poly(methyl methacrylate) content caused a decrease in the hydrodynamic radius of aggregates. A significant difference in the nature of the blocks included in the brushes determines the selectivity of the used solvents, since their thermodynamic quality with respect to the blocks is different. The macromolecules of the studied graft copolymers tend to self-organization in selective solvents with formation of a core-shell structure with an insoluble solvophobic core surrounded by the solvophilic shell of side chains. KW - molecular brushes KW - amphiphilic side chains KW - molecular hydrodynamics and KW - optics KW - conformational and hydrodynamic characteristics KW - aggregation Y1 - 2020 U6 - https://doi.org/10.3390/polym12122922 SN - 2073-4360 VL - 12 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Evsevleev, Sergei A1 - Paciornik, Sidnei A1 - Bruno, Giovanni T1 - Advanced deep learning-based 3D microstructural characterization of multiphase metal matrix composites JF - Advanced engineering materials N2 - The quantitative analysis of microstructural features is a key to understanding the micromechanical behavior of metal matrix composites (MMCs), which is a premise for their use in practice. Herein, a 3D microstructural characterization of a five-phase MMC is performed by synchrotron X-ray computed tomography (SXCT). A workflow for advanced deep learning-based segmentation of all individual phases in SXCT data is shown using a fully convolutional neural network with U-net architecture. High segmentation accuracy is achieved with a small amount of training data. This enables extracting unprecedently precise microstructural parameters (e.g., volume fractions and particle shapes) to be input, e.g., in micromechanical models. KW - computed tomography KW - convolutional neural networks KW - deep learning KW - metal KW - matrix composites KW - segmentations Y1 - 2020 U6 - https://doi.org/10.1002/adem.201901197 SN - 1438-1656 SN - 1527-2648 VL - 22 IS - 4 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kappel, David A1 - Sachse, Manuel A1 - Haack, David A1 - Otto, Katharina A. T1 - Discrete element modeling of boulder and cliff morphologies on comet 67P/Churyumov-Gerasimenko JF - Astronomy and astrophysics : an international weekly journal N2 - Context: Even after the Rosetta mission, some of the mechanical parameters of comet 67P/Churyumov-Gerasimenko's surface material are not yet well constrained. These parameters are needed to improve our understanding of cometary activity or for planning sample return missions. Aims: We study some of the physical processes involved in the formation of selected surface features and investigate the mechanical and geometrical parameters involved. Methods: Applying the discrete element method (DEM) in a low-gravity environment, we numerically simulated the surface layer particle dynamics involved in the formation of selected morphological features. The material considered is a mixture of polydisperse ice and dust spheres with inter-particle forces given by the Hertz contact model, translational friction, rolling friction, cohesion from unsintered contacts, and optionally due to bonds from ice sintering. We determined a working set of parameters that enables the simulations to be reasonably realistic and investigated morphological changes due to modifications thereof. Results: The selected morphological features are reasonably well reproduced using model materials with a tensile strength on the order of 1-10 Pa. Increasing the diameters of the spherical particles decreases the material strength, and increasing the friction leads to a more brittle but somewhat stronger material. High friction is required to make the material sufficiently brittle to match observations, which points to the presence of very rough, even angular particles. Reasonable seismic activity does not suffice to trigger the collapses of cliffs without material heterogeneities or structural defects. Conclusions: DEM modeling can be a powerful tool to investigate mechanical parameters of cometary surface material. However, many uncertainties arise from our limited understanding of particle shapes, spatial configurations, and size distributions, all on multiple length scales. Further numerical work, in situ measurements, and sample return missions are needed to better understand the mechanics of cometary material and cometary activity. KW - comets: general KW - comets: individual: 67P KW - Churyumov-Gerasimenko KW - methods: numerical Y1 - 2020 U6 - https://doi.org/10.1051/0004-6361/201937152 SN - 0004-6361 SN - 1432-0746 VL - 641 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Mkrtchian, Vanik E. A1 - Henkel, Carsten T1 - Green function solution of generalised boundary value problems JF - Physics Letters A N2 - We construct an expression for the Green function of a differential operator satisfying nonlocal, homogeneous boundary conditions starting from the fundamental solution of the differential operator. This also provides the solution to the boundary value problem of an inhomogeneous partial differential equation with inhomogeneous, nonlocal boundary conditions. The construction applies for a broad class of linear partial differential equations and linear boundary conditions. KW - Boundary value problem KW - Green function Y1 - 2020 U6 - https://doi.org/10.1016/j.physleta.2020.126573 SN - 0375-9601 SN - 1873-2429 SN - 0031-9163 VL - 384 IS - 23 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Makwana, Kirit D. A1 - Yan, Huirong T1 - Properties of magnetohydrodynamic modes in compressively driven plasma turbulence JF - Physical Review X N2 - We study properties of magnetohydrodynamic (MHD) eigenmodes by decomposing the data of MHD simulations into linear MHD modes-namely, the Alfven, slow magnetosonic, and fast magnetosonic modes. We drive turbulence with a mixture of solenoidal and compressive driving while varying the Alfven Mach number (M-A), plasma beta, and the sonic Mach number from subsonic to transsonic. We find that the proportion of fast and slow modes in the mode mixture increases with increasing compressive forcing. This proportion of the magnetosonic modes can also become the dominant fraction in the mode mixture. The anisotropy of the modes is analyzed by means of their structure functions. The Alfven-mode anisotropy is consistent with the Goldreich-Sridhar theory. We find a transition from weak to strong Alfvenic turbulence as we go from low to high M-A. The slow-mode properties are similar to the Alfven mode. On the other hand, the isotropic nature of fast modes is verified in the cases where the fast mode is a significant fraction of the mode mixture. The fast-mode behavior does not show any transition in going from low to high M-A. We find indications that there is some interaction between the different modes, and the properties of the dominant mode can affect the properties of the weaker modes. This work identifies the conditions under which magnetosonic modes can be a major fraction of turbulent astrophysical plasmas, including the regime of weak turbulence. Important astrophysical implications for cosmic-ray transport and magnetic reconnection are discussed. KW - Astrophysics KW - Plasma Physics Y1 - 2020 U6 - https://doi.org/10.1103/PhysRevX.10.031021 SN - 2160-3308 VL - 10 IS - 3 PB - American Physical Society (APS) CY - College Park ER - TY - JOUR A1 - Gruner, David A1 - Barnes, Sydney A. T1 - Rotation periods for cool stars in the open cluster Ruprecht 147 (NGC 6774) Implications for gyrochronology JF - Astronomy and astrophysics : an international weekly journal N2 - Context: Gyrochronology allows the derivation of ages for cool main sequence stars based on their observed rotation periods and masses, or a suitable proxy thereof. It is increasingly well-explored for FGK stars, but requires further measurements for older ages and K - M-type stars. Aims: We study the 2.7 Gyr-old open cluster Ruprecht 147 to compare it with the previously-studied, but far more distant, NGC 6819 cluster, and especially to measure cooler stars than was previously possible there. Methods: We constructed an inclusive list of 102 cluster members from prior work, including Gaia DR2, and for which light curves were also obtained during Campaign 7 of the Kepler/K2 space mission. We placed them in the cluster color-magnitude diagram and checked the related information against appropriate isochrones. The light curves were then corrected for data systematics using Principal Component Analysis on all observed K2 C07 stars and subsequently subjected to periodicity analysis. Results: Periodic signals are found for 32 stars, 21 of which are considered to be both highly reliable and to represent single, or effectively single, Ru 147 stars. These stars cover the spectral types from late-F to mid-M stars, and they have periods ranging from 6 d - 33 d, allowing for a comparison of Ruprecht 147 to both other open clusters and to models of rotational spindown. The derived rotation periods connect reasonably to, overlap with, and extend to lower masses the known rotation period distribution of the 2.5 Gyr-old cluster NGC 6819. Conclusions: The data confirm that cool stars lie on a single surface in rotation period-mass-age space, and they simultaneously challenge its commonly assumed shape. The shape at the low mass region of the color-period diagram at the age of Ru 147 favors a recently-proposed model which requires a third mass-dependent timescale in addition to the two timescales required by a former model, suggesting that a third physical process is required to model rotating stars effectively. KW - stars: late-type KW - stars: low-mass KW - stars: rotation KW - stars: solar-type Y1 - 2020 U6 - https://doi.org/10.1051/0004-6361/202038984 SN - 0004-6361 SN - 1432-0746 VL - 644 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Moutal, Nicolas A1 - Grebenkov, Denis S. T1 - The localization regime in a nutshell JF - Journal of magnetic resonance : JMR N2 - High diffusion-sensitizing magnetic field gradients have been more and more often applied nowadays to achieve a better characterization of the microstructure. As the resulting spin-echo signal significantly deviates from the conventional Gaussian form, various models have been employed to interpret these deviations and to relate them with the microstructural properties of a sample. In this paper, we argue that the non-Gaussian behavior of the signal is a generic universal feature of the Bloch-Torrey equation. We provide a simple yet rigorous description of the localization regime emerging at high extended gradients and identify its origin as a symmetry breaking at the reflecting boundary. We compare the consequent non-Gaussian signal decay to other diffusion NMR regimes such as slow-diffusion, motional-narrowing and diffusion-diffraction regimes. We emphasize limitations of conventional perturbative techniques and advocate for non-perturbative approaches which may pave a way to new imaging modalities in this field. KW - Localization regime KW - Bloch-Torrey equation KW - Diffusion NMR KW - Spin-echo KW - Non-perturbative analysis Y1 - 2020 U6 - https://doi.org/10.1016/j.jmr.2020.106836 SN - 1090-7807 SN - 1096-0856 VL - 320 PB - Elsevier CY - San Diego, Calif. [u.a.] ER - TY - JOUR A1 - Awad, Emad A1 - Metzler, Ralf T1 - Crossover dynamics from superdiffusion to subdiffusion BT - models and solutions JF - Fractional calculus and applied analysis : an international journal for theory and applications N2 - The Cattaneo or telegrapher's equation describes the crossover from initial ballistic to normal diffusion. Here we study and survey time-fractional generalisations of this equation that are shown to produce the crossover of the mean squared displacement from superdiffusion to subdiffusion. Conditional solutions are derived in terms of Fox H-functions and the dth-order moments as well as the diffusive flux of the different models are derived. Moreover, the concept of the distribution-like is proposed as an alternative to the probability density function. KW - Cattaneo equation KW - telegrapher's equation KW - crossover dynamics KW - fractional dynamic equations KW - anomalous diffusion KW - superdiffusion and KW - subdiffusion KW - Fox H-functions Y1 - 2020 U6 - https://doi.org/10.1515/fca-2020-0003 SN - 1311-0454 SN - 1314-2224 VL - 23 IS - 1 SP - 55 EP - 102 PB - De Gruyter CY - Berlin ; Boston ER - TY - JOUR A1 - Gostkowska-Lekner, Natalia Katarzyna A1 - Wallacher, Dirk A1 - Grimm, Nico A1 - Habicht, Klaus A1 - Hofmann, Tommy T1 - A novel electrochemical anodization cell for the synthesis of mesoporous silicon JF - Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques N2 - A novel design of an electrochemical anodization cell dedicated to the synthesis of mesoporous, single-crystalline silicon is presented. First and foremost, the design principle follows user safety since electrochemical etching of silicon requires highly hazardous electrolytes based on hydrofluoric (HF) acid. The novel cell design allows for safe electrolyte handling prior, during, and post-etching. A peristaltic pump with HF-resistant fluoroelastomer tubing transfers electrolytes between dedicated reservoirs and the anodization cell. Due to the flexibility of the cell operation, different processing conditions can be realized providing a large parameter range for the attainable sample thickness, its porosity, and the mean pore size. Rapid etching on the order of several minutes to synthesize micrometer-thick porous silicon epilayers on bulk silicon is possible as well as long-time etching with continuous, controlled electrolyte flow for several days to prepare up to 1000 mu m thick self-supporting porous silicon membranes. A highly adaptable, LabVIEW((TM))-based control software allows for user-defined etching profiles. Y1 - 2020 U6 - https://doi.org/10.1063/5.0008536 SN - 0034-6748 SN - 1089-7623 VL - 91 IS - 10 PB - American Institute of Physics CY - Melville, NY ER - TY - JOUR A1 - Chougule, Abhishek A1 - Przybilla, Norbert A1 - Dimitrijevic, Milan S. A1 - Schaffenroth, Veronika T1 - The impact of improved Stark-broadening widths on the modeling of double-ionized chromium lines in hot stars JF - Contributions of the Astronomical Observatory Skalnate Pleso = Práce Astronomického Observatória na Skalnatom Plese N2 - Stellar atmosphere modeling and chemical abundance determinations require the knowledge of spectral line shapes. Spectral lines of chromium in various ionization stages are common in stellar spectra but detailed data on Stark broadening for them is scarce. Recently we reported on the first calculations of Stark widths for several 4s-4p transitions of double-ionized chromium, employing the Modified Semi-Empirical approach (MSE). In this work we present applications of the data to spectrum synthesis of Cr III lines in the ultraviolet region of hot stars. The Atlas9 model atmosphere code and the line-formation code Surface were used with the assumption of local thermodynamic equilibrium. The improvements of adopting the MSE broadening tables instead of approximate Stark broadening coefficients are investigated for a total of 56 Cr III lines visible in HST/STIS spectra of the B3 subgiant star Iota Herculis and the subdwarf B-star Feige 66. KW - line: profiles KW - stars: abundances Y1 - 2020 U6 - https://doi.org/10.31577/caosp.2020.50.1.139 SN - 1335-1842 SN - 1336-0337 VL - 50 IS - 1 SP - 139 EP - 146 PB - Astronomický Ústav SAV CY - Tatranská Lomnica ER - TY - JOUR A1 - Gómez-Nava, Luis A1 - Grossmann, Robert A1 - Hintsche, Marius A1 - Beta, Carsten A1 - Peruani, Fernando T1 - A novel approach to chemotaxis BT - active particles guided by internal clocks JF - epl : a letters journal exploring the frontiers of physics N2 - Motivated by the observation of non-exponential run-time distributions of bacterial swimmers, we propose a minimal phenomenological model for taxis of active particles whose motion is controlled by an internal clock. The ticking of the clock depends on an external concentration field, e.g., a chemical substance. We demonstrate that these particles can detect concentration gradients and respond to them by moving up- or down-gradient depending on the clock design, albeit measurements of these fields are purely local in space and instantaneous in time. Altogether, our results open a new route in the study of directional navigation: we show that the use of a clock to control motility actions represents a generic and versatile toolbox to engineer behavioral responses to external cues, such as light, chemical, or temperature gradients. Y1 - 2020 U6 - https://doi.org/10.1209/0295-5075/130/68002 SN - 0295-5075 SN - 1286-4854 VL - 130 IS - 6 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Jay, Raphael M. A1 - Vaz da Cruz, Vinicius A1 - Eckert, Sebastian A1 - Fondell, Mattis A1 - Mitzner, Rolf A1 - Föhlisch, Alexander T1 - Probing solute-solvent interactions of transition metal complexes using L-edge absorption spectroscopy JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - In order to tailor solution-phase chemical reactions involving transition metal complexes, it is critical to understand how their valence electronic charge distributions are affected by the solution environment. Here, solute-solvent interactions of a solvatochromic mixed-ligand iron complex were investigated using X-ray absorption spectroscopy at the transition metal L-2,L-3-edge. Due to the selectivity of the corresponding core excitations to the iron 3d orbitals, the method grants direct access to the valence electronic structure around the iron center and its response to interactions with the solvent environment. A linear increase of the total L-2,L-3-edge absorption cross section as a function of the solvent Lewis acidity is revealed. The effect is caused by relative changes in different metal-ligand-bonding channels, which preserve local charge densities while increasing the density of unoccupied states around the iron center. These conclusions are corroborated by a combination of molecular dynamics and spectrum simulations based on time-dependent density functional theory. The simulations reproduce the spectral trends observed in the X-ray but also optical absorption experiments. Our results underscore the importance of solute-solvent interactions when aiming for an accurate description of the valence electronic structure of solvated transition metal complexes and demonstrate how L-2,L-3-edge absorption spectroscopy can aid in understanding the impact of the solution environment on intramolecular covalency and the electronic charge distribution. KW - basis-sets KW - charge-transfer KW - density KW - dynamics KW - electron localization KW - iron KW - solvation KW - spin-crossover KW - tranfer excited-state KW - x-ray-absorption Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpcb.0c00638 SN - 1520-6106 SN - 1520-5207 VL - 124 IS - 27 SP - 5636 EP - 5645 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Jiang, Wei A1 - Stolterfoht, Martin A1 - Jin, Hui A1 - Burn, Paul L. T1 - Hole-transporting poly(dendrimer)s as electron donors for low donor organic solar cells with efficient charge transport JF - Macromolecules : a publication of the American Chemical Society N2 - Recent work on bulk-heterojunction organic solar cells has shown that photoexcitation of the electron acceptor followed by photoinduced hole transfer can play a significant role in photocurrent generation. To establish a clear understanding of the role of the donor in the photoinduced hole transfer process, we have synthesized a series of triphenylamine-based hole-transporting poly(dendrimer)s with mechanically flexible nonconjugated backbones via ring-opening metathesis polymerization and used them in low donor content solar cells. The poly(dendrimer)s were found to retain the hole transporting properties of the parent dendrimer, with hole mobilities of similar to 10(-3) cm(2)/(V s) for solution processed neat films. However, when blended with [6,6]-phenyl-C-70-butyric acid methyl ester (PC70BM), the best performing poly(dendrimer) was found to form films that had balanced and relatively high hole/electron mobilities of similar to 5 x 10(-4) cm(2) /(V s). In contrast, at the same concentration the parent dendrimer:PC70BM blend was found to have a hole mobility of 4 orders of magnitude less than the electron mobility. The balanced hole and electron mobilities for the 6 wt % poly(dendrimer):PC70BM blend led to an absence of second-order bimolecular recombination losses at the maximum power point and resulted in a fill factor of 0.65 and a PCE 2.1% for the devices, which was almost three times higher than the cells composed of the parent dendrimer:PC70BM blends. Y1 - 2020 U6 - https://doi.org/10.1021/acs.macromol.0c00520 SN - 0024-9297 SN - 1520-5835 VL - 53 IS - 8 SP - 2902 EP - 2911 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Schulz, Christian A1 - Lieutenant, Klaus A1 - Xiao, Jie A1 - Hofmann, Tommy A1 - Wong, Deniz A1 - Habicht, Klaus T1 - Characterization of the soft X-ray spectrometer PEAXIS at BESSY II JF - Journal of synchrotron radiation N2 - The performance of the recently commissioned spectrometer PEAXIS for resonant inelastic soft X-ray scattering (RIXS) and X-ray photoelectron spectroscopy and its hosting beamline U41-PEAXIS at the BESSY II synchrotron are characterized. The beamline provides linearly polarized light from 180 eV to 1600 eV allowing for RIXS measurements in the range 200-1200 eV. The monochromator optics can be operated in different configurations to provide either high flux with up to 10(12) photons s(-1) within the focal spot at the sample or high energy resolution with a full width at half maximum of <40 meV at an incident photon energy of similar to 400 eV. The measured total energy resolution of the RIXS spectrometer is in very good agreement with theoretically predicted values obtained by ray-tracing simulations. PEAXIS features a 5 m-long RIXS spectrometer arm that can be continuously rotated about the sample position by 106 degrees within the horizontal photon scattering plane, thus enabling the study of momentum-transfer-dependent excitations. Selected scientific examples are presented to demonstrate the instrument capabilities, including measurements of excitations in single-crystalline NiO and in liquid acetone employing a fluid cell sample manipulator. Planned upgrades of the beamline and the RIXS spectrometer to further increase the energy resolution to similar to 100 meV at 1000 eV incident photon energy are discussed. KW - resonant inelastic X-ray scattering KW - X-ray photoelectron spectroscopy KW - soft X-ray spectroscopy KW - soft X-ray beamline KW - X-ray emission KW - X-ray KW - absorption KW - BESSY II Y1 - 2020 U6 - https://doi.org/10.1107/S1600577519014887 SN - 1600-5775 VL - 27 SP - 238 EP - 249 PB - International Union of Crystallography CY - Chester ER - TY - JOUR A1 - Chen, Cong A1 - Müller, Bernd R. A1 - Prinz, Carsten A1 - Stroh, Julia A1 - Feldmann, Ines A1 - Bruno, Giovanni T1 - The correlation between porosity characteristics and the crystallographic texture in extruded stabilized aluminium titanate for diesel particulate filter applications JF - Journal of the European Ceramic Society N2 - Porous ceramic diesel particulate filters (DPFs) are extruded products that possess macroscopic anisotropic mechanical and thermal properties. This anisotropy is caused by both morphological features (mostly the orientation of porosity) and crystallographic texture. We systematically studied those two aspects in two aluminum titanate ceramic materials of different porosity using mercury porosimetry, gas adsorption, electron microscopy, X-ray diffraction, and X-ray refraction radiography. We found that a lower porosity content implies a larger isotropy of both the crystal texture and the porosity orientation. We also found that, analogous to cordierite, crystallites do align with their axis of negative thermal expansion along the extrusion direction. However, unlike what found for cordierite, the aluminium titanate crystallite form is such that a more pronounced (0 0 2) texture along the extrusion direction implies porosity aligned perpendicular to it. KW - preferred orientation KW - X-ray refraction KW - pore orientation KW - crystal KW - structure KW - extrusion KW - microstructure-property relations Y1 - 2020 U6 - https://doi.org/10.1016/j.jeurceramsoc.2019.11.076 SN - 0955-2219 SN - 1873-619X VL - 40 IS - 4 SP - 1592 EP - 1601 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Arya, Pooja A1 - Jelken, Joachim A1 - Feldmann, David A1 - Lomadze, Nino A1 - Santer, Svetlana T1 - Light driven diffusioosmotic repulsion and attraction of colloidal particles JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - In this paper, we introduce the phenomenon of light driven diffusioosmotic long-range attraction and repulsion of porous particles under irradiation with UV light. The change in the inter-particle interaction potential is governed by flow patterns generated around single colloids and results in reversible aggregation or separation of the mesoporous silica particles that are trapped at a solid surface. The range of the interaction potential extends to several times the diameter of the particle and can be adjusted by varying the light intensity. The "fuel" of the process is a photosensitive surfactant undergoing photo-isomerization from a more hydrophobic trans-state to a rather hydrophilic cis-state. The surfactant has different adsorption affinities to the particles depending on the isomerization state. The trans-isomer, for example, tends to accumulate in the negatively charged pores of the particles, while the cis-isomer prefers to remain in the solution. This implies that when under UV irradiation cis-isomers are being formed within the pores, they tend to diffuse out readily and generate an excess concentration near the colloid's outer surface, ultimately resulting in the initiation of diffusioosmotic flow. The direction of the flow depends strongly on the dynamic redistribution of the fraction of trans- and cis-isomers near the colloids due to different kinetics of photo-isomerization within the pores as compared to the bulk. The unique feature of the mechanism discussed in the paper is that the long-range mutual repulsion but also the attraction can be tuned by convenient external optical stimuli such as intensity so that a broad variety of experimental situations for manipulation of a particle ensemble can be realized. Y1 - 2020 U6 - https://doi.org/10.1063/5.0007556 SN - 0021-9606 SN - 1089-7690 VL - 152 IS - 19 PB - American Institute of Physics CY - Melville, NY ER - TY - JOUR A1 - Jiang, Wei A1 - Tao, Chen A1 - Stolterfoht, Martin A1 - Jin, Hui A1 - Stephen, Meera A1 - Lin, Qianqian A1 - Nagiri, Ravi C. R. A1 - Burn, Paul L. A1 - Gentle, Ian R. T1 - Hole-transporting materials for low donor content organic solar cells BT - charge transport and device performance JF - Organic electronics : physics, materials and applications N2 - Low donor content solar cells are an intriguing class of photovoltaic device about which there is still considerable discussion with respect to their mode of operation. We have synthesized a series of triphenylamine-based materials for use in low donor content devices with the electron accepting [6,6]-phenyl-C71-butyric acid methyl ester (PC(7)0BM). The triphenylamine-based materials absorb light in the near UV enabling the PC(7)0BM to be be the main light absorbing organic semiconducting material in the solar cell. It was found that the devices did not operate as classical Schottky junctions but rather photocurrent was generated by hole transfer from the photo-excited PC(7)0BM to the triphenylamine-based donors. We found that replacing the methoxy surface groups with methyl groups on the donor material led to a decrease in hole mobility for the neat films, which was due to the methyl substituted materials having the propensity to aggregate. The thermodynamic drive to aggregate was advantageous for the performance of the low donor content (6 wt%) films. It was found that the 6 wt% donor devices generally gave higher performance than devices containing 50 wt% of the donor. KW - photoexcited hole transfer KW - photocurrent generation KW - synthesis KW - hole KW - mobility KW - low donor content KW - Schottky junction Y1 - 2020 U6 - https://doi.org/10.1016/j.orgel.2019.105480 SN - 1566-1199 SN - 1878-5530 VL - 76 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kosztolowicz, Tadeusz A1 - Metzler, Ralf T1 - Diffusion of antibiotics through a biofilm in the presence of diffusion and absorption barriers JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We propose a model of antibiotic diffusion through a bacterial biofilm when diffusion and/or absorption barriers develop in the biofilm. The idea of this model is: We deduce details of the diffusion process in a medium in which direct experimental study is difficult, based on probing diffusion in external regions. Since a biofilm has a gel-like consistency, we suppose that subdiffusion of particles in the biofilm may occur. To describe this process we use a fractional subdiffusion-absorption equation with an adjustable anomalous diffusion exponent. The boundary conditions at the boundaries of the biofilm are derived by means of a particle random walk model on a discrete lattice leading to an expression involving a fractional time derivative. We show that the temporal evolution of the total amount of substance that has diffused through the biofilm explicitly depends on whether there is antibiotic absorption in the biofilm. This fact is used to experimentally check for antibiotic absorption in the biofilm and if subdiffusion and absorption parameters of the biofilm change over time. We propose a four-stage model of antibiotic diffusion in biofilm based on the following physical characteristics: whether there is absorption of the antibiotic in the biofilm and whether all biofilm parameters remain unchanged over time. The biological interpretation of the stages, in particular their relation with the bacterial defense mechanisms, is discussed. Theoretical results are compared with empirical results of ciprofloxacin diffusion through Pseudomonas aeruginosa biofilm, and ciprofloxacin and gentamicin diffusion through Proteus mirabilis biofilm. Y1 - 2020 U6 - https://doi.org/10.1103/PhysRevE.102.032408 SN - 2470-0045 SN - 2470-0053 VL - 102 IS - 3 PB - American Physical Society CY - Melville, NY ER - TY - JOUR A1 - Pelisoli, Ingrid A1 - Vos, Joris A1 - Geier, Stephan A1 - Schaffenroth, Veronika A1 - Baran, Andrzej S. T1 - Alone but not lonely BT - observational evidence that binary interaction is always required to form hot subdwarf stars JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Hot subdwarfs are core-helium burning stars that show lower masses and higher temperatures than canonical horizontal branch stars. They are believed to be formed when a red giant suffers an extreme mass-loss episode. Binary interaction is suggested to be the main formation channel, but the high fraction of apparently single hot subdwarfs (up to 30%) has prompted single star formation scenarios to be proposed.Aims. We investigate the possibility that hot subdwarfs could form without interaction by studying wide binary systems. If single formation scenarios were possible, there should be hot subdwarfs in wide binaries that have undergone no interaction.Methods. Angular momentum accretion during interaction is predicted to cause the hot subdwarf companion to spin up to the critical velocity. The effect of this should still be observable given the timescales of the hot subdwarf phase. To study the rotation rates of companions, we have analysed light curves from the Transiting Exoplanet Survey Satellite for all known hot subdwarfs showing composite spectral energy distributions indicating the presence of a main sequence wide binary companion. If formation without interaction were possible, that would also imply the existence of hot subdwarfs in very wide binaries that are not predicted to interact. To identify such systems, we have searched for common proper motion companions with projected orbital distances of up to 0.1 pc to all known spectroscopically confirmed hot subdwarfs using Gaia DR2 astrometry.Results. We find that the companions in composite hot subdwarfs show short rotation periods when compared to field main sequence stars. They display a triangular-shaped distribution with a peak around 2.5 days, similar to what is observed for young open clusters. We also report a shortage of hot subdwarfs with candidate common proper motion companions. We identify only 16 candidates after probing 2938 hot subdwarfs with good astrometry. Out of those, at least six seem to be hierarchical triple systems, in which the hot subdwarf is part of an inner binary.Conclusions. The observed distribution of rotation rates for the companions in known wide hot subdwarf binaries provides evidence of previous interaction causing spin-up. Additionally, there is a shortage of hot subdwarfs in common proper motion pairs, considering the frequency of such systems among progenitors. These results suggest that binary interaction is always required for the formation of hot subdwarfs. KW - subdwarfs KW - binaries: general KW - stars: variables: general Y1 - 2020 U6 - https://doi.org/10.1051/0004-6361/202038473 SN - 0004-6361 SN - 1432-0746 VL - 642 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Kontogiannis, Ioannis A1 - Dineva, Ekaterina Ivanova A1 - Diercke, Andrea A1 - Verma, Meetu A1 - Kuckein, Christoph A1 - Balthasar, Horst A1 - Denker, Carsten T1 - High-resolution spectroscopy of an erupting minifilament and its impact on the nearby chromosphere JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We study the evolution of a minifilament eruption in a quiet region at the center of the solar disk and its impact on the ambient atmosphere. We used high spectral resolution imaging spectroscopy in H alpha acquired by the echelle spectrograph of the Vacuum Tower Telescope, Tenerife, Spain; photospheric magnetic field observations from the Helioseismic Magnetic Imager; and UV/EUV imaging from the Atmospheric Imaging Assembly of the Solar Dynamics Observatory. The H alpha line profiles were noise-stripped using principal component analysis and then inverted to produce physical and cloud model parameter maps. The minifilament formed between small-scale, opposite-polarity magnetic features through a series of small reconnection events, and it erupted within an hour after its appearance in H alpha. Its development and eruption exhibited similarities to large-scale erupting filaments, indicating the action of common mechanisms. Its eruption took place in two phases, namely, a slow rise and a fast expansion, and it produced a coronal dimming, before the minifilament disappeared. During its eruption, we detected a complicated velocity pattern, indicative of a twisted, thread-like structure. Part of its material returned to the chromosphere, producing observable effects on nearby low-lying magnetic structures. Cloud model analysis showed that the minifilament was initially similar to other chromospheric fine structures, in terms of optical depth, source function, and Doppler width, but it resembled a large-scale filament on its course to eruption. High spectral resolution observations of the chromosphere can provide a wealth of information regarding the dynamics and properties of minifilaments and their interactions with the surrounding atmosphere. KW - the sun KW - solar chromosphere KW - active solar chromosphere KW - active solar KW - corona KW - solar filament eruptions KW - high resolution spectroscopy Y1 - 2020 U6 - https://doi.org/10.3847/1538-4357/aba117 SN - 0004-637X SN - 1538-4357 VL - 898 IS - 2 PB - Institute of Physics Publ. CY - London ER - TY - JOUR A1 - Rüdiger, Günther A1 - Schultz, Manfred T1 - Large-scale dynamo action of magnetized Taylor-Couette flows JF - Monthly notices of the Royal Astronomical Society N2 - A conducting Taylor-Couette flow with quasi-Keplerian rotation law containing a toroidal magnetic field serves as a mean-field dynamo model of the Tayler-Spruit type. The flows are unstable against non-axisymmetric perturbations which form electromotive forces defining a effect and eddy diffusivity. If both degenerated modes with m = +/- 1 are excited with the same power then the global a effect vanishes and a dynamo cannot work. It is shown, however, that the Tayler instability produces finite alpha effects if only an isolated mode is considered but this intrinsic helicity of the single-mode is too low for an alpha(2) dynamo. Moreover, an alpha Omega dynamo model with quasi-Keplerian rotation requires a minimum magnetic Reynolds number of rotation of Rm similar or equal to 2000 to work. Whether it really works depends on assumptions about the turbulence energy. For a steeper-than-quadratic dependence of the turbulence intensity on the magnetic field, however, dynamos are only excited if the resulting magnetic eddy diffusivity approximates its microscopic value, eta(T) similar or equal to eta. By basically lower or larger eddy diffusivities the dynamo instability is suppressed. KW - dynamo KW - instabilities KW - MHD KW - magnetic fields Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa293 SN - 0035-8711 SN - 1365-2966 VL - 493 IS - 1 SP - 1249 EP - 1260 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Oesch, Tyler A1 - Weise, Frank A1 - Bruno, Giovanni T1 - Detection and quantification of cracking in concrete aggregate through virtual data fusion of X-ray computed tomography images JF - Materials N2 - In this work, which is part of a larger research program, a framework called "virtual data fusion" was developed to provide an automated and consistent crack detection method that allows for the cross-comparison of results from large quantities of X-ray computed tomography (CT) data. A partial implementation of this method in a custom program was developed for use in research focused on crack quantification in alkali-silica reaction (ASR)-sensitive concrete aggregates. During the CT image processing, a series of image analyses tailored for detecting specific, individual crack-like characteristics were completed. The results of these analyses were then "fused" in order to identify crack-like objects within the images with much higher accuracy than that yielded by any individual image analysis procedure. The results of this strategy demonstrated the success of the program in effectively identifying crack-like structures and quantifying characteristics, such as surface area and volume. The results demonstrated that the source of aggregate has a very significant impact on the amount of internal cracking, even when the mineralogical characteristics remain very similar. River gravels, for instance, were found to contain significantly higher levels of internal cracking than quarried stone aggregates of the same mineralogical type. KW - X-ray computed tomography (CT) KW - concrete KW - alkali-silica reaction (ASR) KW - ASR-sensitive aggregate KW - solubility test KW - specific surface area KW - crack KW - detection KW - automated image processing KW - damage quantification Y1 - 2020 U6 - https://doi.org/10.3390/ma13183921 SN - 1996-1944 VL - 13 IS - 18 PB - MDPI CY - Basel ER - TY - JOUR A1 - Silanteva, Irina A. A1 - Komolkin, Andrei A1 - Mamontova, Veronika V. A1 - Vorontsov-Velyaminov, Pavel N. A1 - Santer, Svetlana A1 - Kasyanenko, Nina A. T1 - Some features of surfactant organization in DNA solutions at various NaCl concentrations JF - ACS omega / American Chemical Society N2 - The photosensitive azobenzene-containing surfactant C-4-Azo-OC(6)TMAB is a promising agent for reversible DNA packaging in a solution. The simulation of the trans-isomer surfactant organization into associates in a solution with and without salt as well as its binding to DNA at different NaCl concentrations was carried out by molecular dynamics. Experimental data obtained by spectral and hydrodynamic methods were used to verify the results of simulation. It was shown that head-to-tail aggregates with close to antiparallel orientation of surfactant molecules were formed at certain NaCl and surfactant concentrations (below critical micelle concentration). Such aggregates have two positively charged ends, and therefore, they can be attracted to negatively charged DNA phosphates far located along the chain, as well as those that belong to different molecules. This contributes to the formation of intermolecular DNA-DNA contacts, and this way, the experimentally observed precipitation of DNA can be explained. Y1 - 2020 U6 - https://doi.org/10.1021/acsomega.0c01850 SN - 2470-1343 VL - 5 IS - 29 SP - 18234 EP - 18243 PB - ACS Publications CY - Washington ER - TY - JOUR A1 - Laing, Carlo R. A1 - Omel'chenko, Oleh T1 - Moving bumps in theta neuron networks JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We consider large networks of theta neurons on a ring, synaptically coupled with an asymmetric kernel. Such networks support stable "bumps" of activity, which move along the ring if the coupling kernel is asymmetric. We investigate the effects of the kernel asymmetry on the existence, stability, and speed of these moving bumps using continuum equations formally describing infinite networks. Depending on the level of heterogeneity within the network, we find complex sequences of bifurcations as the amount of asymmetry is varied, in strong contrast to the behavior of a classical neural field model. Y1 - 2020 U6 - https://doi.org/10.1063/1.5143261 SN - 1054-1500 SN - 1089-7682 VL - 30 IS - 4 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Richter, Philipp T1 - Hot gas in galaxy halos traced by coronal broad Lyα absorbers JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We explore the possibility to systematically study the extended, hot gaseous halos of low-redshift galaxies with coronal broad Lya absorbers (CBLAs). These are weak, thermally broadenend H I absorption lines arising from the tiny fraction of neutral hydrogen that resides in the collisionally ionized, million-degree halo gas in these galaxies. Using a semi-analytic approach, we model the spatial density and temperature distribution of hot coronal gas to predict strength, spectral shape, and cross section of CBLAs as a function of galaxy-halo mass and line-of-sight impact parameter. For virial halo masses in the range log M M = 10.6 12.6, the characteristic logarithmic CBLA H I column densities and Doppler parameters are log N(H I) = 12.4- 13.4 and b(H I).=.70-200 km s-1, indicating that CBLAs represent weak, shallow spectral features that are difficult to detect. Yet, the expected number density of CBLAs per unit redshift in the above given mass range is d. dz(CBLA). 3, implying that CBLAs have a substantial absorption cross section. We compare the model predictions with a combined set of UV absorption-line spectra from the Hubble Space Telescope (HST)/Cosmic Origins Spectrograph and HST/Space Telescope Imaging Spectrograph that trace the halos of four low-redshift galaxies. We demonstrate that CBLAs might already have been detected in these spectra, but the complex multi-component structure and the limited signal-to-noise ratio complicate the interpretation of these CBLA candidate systems. Our study suggests that CBLAs represent a very interesting absorber class that potentially will allow us to further explore the hot coronae of galaxies with UV spectral data. Y1 - 2020 U6 - https://doi.org/10.3847/1538-4357/ab7937 SN - 0004-637X SN - 1538-4357 VL - 892 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Wang, Wei A1 - Cherstvy, Andrey G. A1 - Liu, Xianbin A1 - Metzler, Ralf T1 - Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Heterogeneous diffusion processes (HDPs) feature a space-dependent diffusivity of the form D(x) = D-0|x|(alpha). Such processes yield anomalous diffusion and weak ergodicity breaking, the asymptotic disparity between ensemble and time averaged observables, such as the mean-squared displacement. Fractional Brownian motion (FBM) with its long-range correlated yet Gaussian increments gives rise to anomalous and ergodic diffusion. Here, we study a combined model of HDPs and FBM to describe the particle dynamics in complex systems with position-dependent diffusivity driven by fractional Gaussian noise. This type of motion is, inter alia, relevant for tracer-particle diffusion in biological cells or heterogeneous complex fluids. We show that the long-time scaling behavior predicted theoretically and by simulations for the ensemble-and time-averaged mean-squared displacements couple the scaling exponents alpha of HDPs and the Hurst exponent H of FBM in a characteristic way. Our analysis of the simulated data in terms of the rescaled variable y similar to |x|(1/(2/(2-alpha)))/t(H) coupling particle position x and time t yields a simple, Gaussian probability density function (PDF), PHDP-FBM(y) = e(-y2)/root pi. Its universal shape agrees well with theoretical predictions for both uni- and bimodal PDF distributions. Y1 - 2020 U6 - https://doi.org/10.1103/PhysRevE.102.012146 SN - 2470-0045 SN - 2470-0053 SN - 1063-651X SN - 1539-3755 SN - 2470-0061 VL - 102 IS - 1 SP - 012146-1 EP - 012146-16 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Léonard, Fabien A1 - Zhang, Zhen A1 - Krebs, Holger A1 - Bruno, Giovanni T1 - Structural and morphological quantitative 3D characterisation of ammonium nitrate prills by X-ray computed tomography JF - Materials N2 - The mixture of ammonium nitrate (AN) prills and fuel oil (FO), usually referred to as ANFO, is extensively used in the mining industry as a bulk explosive. One of the major performance predictors of ANFO mixtures is the fuel oil retention, which is itself governed by the complex pore structure of the AN prills. In this study, we present how X-ray computed tomography (XCT), and the associated advanced data processing workflow, can be used to fully characterise the structure and morphology of AN prills. We show that structural parameters such as volume fraction of the different phases and morphological parameters such as specific surface area and shape factor can be reliably extracted from the XCT data, and that there is a good agreement with the measured oil retention values. Importantly, oil retention measurements (qualifying the efficiency of ANFO as explosives) correlate well with the specific surface area determined by XCT. XCT can therefore be employed non-destructively; it can accurately evaluate and characterise porosity in ammonium nitrate prills, and even predict their efficiency. KW - ANFO KW - explosives KW - specific surface area KW - porosity KW - XCT KW - data processing Y1 - 2020 U6 - https://doi.org/10.3390/ma13051230 SN - 1996-1944 VL - 13 IS - 5 PB - MDPI CY - Basel ER -