TY - JOUR A1 - Pradhan, Prajal A1 - Reusser, Dominik Edwin A1 - Kropp, Jürgen T1 - Embodied greenhouse gas emissions in Diets JF - PLoS one N2 - Changing food consumption patterns and associated greenhouse gas (GHG) emissions have been a matter of scientific debate for decades. The agricultural sector is one of the major GHG emitters and thus holds a large potential for climate change mitigation through optimal management and dietary changes. We assess this potential, project emissions, and investigate dietary patterns and their changes globally on a per country basis between 1961 and 2007. Sixteen representative and spatially differentiated patterns with a per capita calorie intake ranging from 1,870 to >3,400 kcal/day were derived. Detailed analyses show that low calorie diets are decreasing worldwide, while in parallel diet composition is changing as well: a discernable shift towards more balanced diets in developing countries can be observed and steps towards more meat rich diets as a typical characteristics in developed countries. Low calorie diets which are mainly observable in developing countries show a similar emission burden than moderate and high calorie diets. This can be explained by a less efficient calorie production per unit of GHG emissions in developing countries. Very high calorie diets are common in the developed world and exhibit high total per capita emissions of 3.7-6.1 kg CO2eq./day due to high carbon intensity and high intake of animal products. In case of an unbridled demographic growth and changing dietary patterns the projected emissions from agriculture will approach 20 Gt CO2eq./yr by 2050. Y1 - 2013 U6 - https://doi.org/10.1371/journal.pone.0062228 SN - 1932-6203 VL - 8 IS - 5 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Dallmeyer, A. A1 - Claussen, Martin A1 - Wang, Y. A1 - Herzschuh, Ulrike T1 - Spatial variability of Holocene changes in the annual precipitation pattern a model-data synthesis for the Asian monsoon region JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - This study provides a detailed analysis of the mid-Holocene to present-day precipitation change in the Asian monsoon region. We compare for the first time results of high resolution climate model simulations with a standardised set of mid-Holocene moisture reconstructions. Changes in the simulated summer monsoon characteristics (onset, withdrawal, length and associated rainfall) and the mechanisms causing the Holocene precipitation changes are investigated. According to the model, most parts of the Indian subcontinent received more precipitation (up to 5 mm/day) at mid-Holocene than at present-day. This is related to a stronger Indian summer monsoon accompanied by an intensified vertically integrated moisture flux convergence. The East Asian monsoon region exhibits local inhomogeneities in the simulated annual precipitation signal. The sign of this signal depends on the balance of decreased pre-monsoon and increased monsoon precipitation at mid-Holocene compared to present-day. Hence, rainfall changes in the East Asian monsoon domain are not solely associated with modifications in the summer monsoon circulation but also depend on changes in the mid-latitudinal westerly wind system that dominates the circulation during the pre-monsoon season. The proxy-based climate reconstructions confirm the regional dissimilarities in the annual precipitation signal and agree well with the model results. Our results highlight the importance of including the pre-monsoon season in climate studies of the Asian monsoon system and point out the complex response of this system to the Holocene insolation forcing. The comparison with a coarse climate model simulation reveals that this complex response can only be resolved in high resolution simulations. KW - Asian monsoon KW - Holocene KW - Precipitation KW - Climate modelling KW - Moisture reconstructions Y1 - 2013 U6 - https://doi.org/10.1007/s00382-012-1550-6 SN - 0930-7575 SN - 1432-0894 VL - 40 IS - 11-12 SP - 2919 EP - 2936 PB - Springer CY - New York ER - TY - JOUR A1 - Cesca, Simone A1 - Braun, Thomas A1 - Maccaferri, Francesco A1 - Passarelli, Luigi A1 - Rivalta, Eleonora A1 - Dahm, Torsten T1 - Source modelling of the M5-6 Emilia-Romagna, Italy, earthquakes (2012 May 20-29) JF - Geophysical journal international N2 - On 2012 May 20 and 29, two damaging earthquakes with magnitudes M-w 6.1 and 5.9, respectively, struck the Emilia-Romagna region in the sedimentary Po Plain, Northern Italy, causing 26 fatalities, significant damage to historical buildings and substantial impact to the economy of the region. The earthquake sequence included four more aftershocks with M-w, >= 5.0, all at shallow depths (about 7-9 km), with similar WNW-ESE striking reverse mechanism. The timeline of the sequence suggests significant static stress interaction between the largest events. We perform here a detailed source inversion, first adopting a point source approximation and considering pure double couple and full moment tensor source models. We compare different extended source inversion approaches for the two largest events, and find that the rupture occurred in both cases along a subhorizontal plane, dipping towards SSW Directivity is well detected for the May 20 main shock, indicating that the rupture propagated unilaterally towards SE. Based on the focal mechanism solution, we further estimate the co-seismic static stress change induced by the May 20 event. By using the rate-and-state model and a Poissonian earthquake occurrence, we infer that the second largest event of May 29 was induced with a probability in the range 0.2-0.4. This suggests that the segment of fault was already prone to rupture. Finally, we estimate peak ground accelerations for the two main events as occurred separately or simultaneously. For the scenario involving hypothetical rupture areas of both main events, we estimate M-w = 6.3 and an increase of ground acceleration by 50 per cent. The approach we propose may help to quantify rapidly which regions are invested by a significant increase of the hazard, bearing the potential for large aftershocks or even a second main shock. KW - Earthquake dynamics KW - Earthquake source observations Y1 - 2013 U6 - https://doi.org/10.1093/gji/ggt069 SN - 0956-540X VL - 193 IS - 3 SP - 1658 EP - 1672 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Maghsoudi, Samira A1 - Cesca, Simone A1 - Hainzl, Sebastian A1 - Kaiser, Diethelm A1 - Becker, Dirk A1 - Dahm, Torsten T1 - Improving the estimation of detection probability and magnitude of completeness in strongly heterogeneous media, an application to acoustic emission (AE) JF - Geophysical journal international N2 - Reliable estimations of magnitude of completeness (M-c) are essential for a correct interpretation of seismic catalogues. The spatial distribution of M-c may be strongly variable and difficult to assess in mining environments, owing to the presence of galleries, cavities, fractured regions, porous media and different mineralogical bodies, as well as in consequence of inhomogeneous spatial distribution of the seismicity. We apply a 3-D modification of the probabilistic magnitude of completeness (PMC) method, which relies on the analysis of network detection capabilities. In our approach, the probability to detect an event depends on its magnitude, source receiver Euclidian distance and source receiver direction. The suggested method is proposed for study of the spatial distribution of the magnitude of completeness in a mining environment and here is applied to a 2-months acoustic emission (AE) data set recorded at the Morsleben salt mine, Germany. The dense seismic network and the large data set, which includes more than one million events, enable a detailed testing of the method. This method is proposed specifically for strongly heterogeneous media. Besides, it can also be used for specific network installations, with sensors with a sensitivity, dependent on the direction of the incoming wave (e.g. some piezoelectric sensors). In absence of strong heterogeneities, the standards PMC approach should be used. We show that the PMC estimations in mines strongly depend on the source receiver direction, and cannot be correctly accounted using a standard PMC approach. However, results can be improved, when adopting the proposed 3-D modification of the PMC method. Our analysis of one central horizontal and vertical section yields a magnitude of completeness of about M-c approximate to 1 (AE magnitude) at the centre of the network, which increases up to M-c approximate to 4 at further distances outside the network; the best detection performance is estimated for a NNE-SSE elongated region, which corresponds to the strike direction of the low-attenuating salt body. Our approach provides us with small-scale details about the capability of sensors to detect an earthquake, which can be linked to the presence of heterogeneities in specific directions. Reduced detection performance in presence of strong structural heterogeneities (cavities) is confirmed by synthetic waveform modelling in heterogeneous media. KW - Seismic attenuation KW - Statistical seismology Y1 - 2013 U6 - https://doi.org/10.1093/gji/ggt049 SN - 0956-540X VL - 193 IS - 3 SP - 1556 EP - 1569 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Uhlmann, Manuela A1 - Korup, Oliver A1 - Huggel, Christian A1 - Fischer, Luzia A1 - Kargel, Jeffrey S. T1 - Supra-glacial deposition and flux of catastrophic rock-slope failure debris, south-central Alaska JF - Earth surface processes and landforms : the journal of the British Geomorphological Research Group N2 - The ongoing debate over the effects of global environmental change on Earth's cryosphere calls for detailed knowledge about process rates and their variability in cold environments. In this context, appraisals of the coupling between glacier dynamics and para-glacial erosion rates in tectonically active mountains remain rare. We contribute to filling this knowledge gap and present an unprecedented regional-scale inventory of supra-glacial sediment flux and hillslope erosion rates inferred from an analysis of 123 large (> 0 center dot 1km2) catastrophic bedrock landslides that fell onto glaciers in the Chugach Mountains, Alaska, as documented by satellite images obtained between 1972 to 2008. Assuming these supra-glacial landslide deposits to be passive strain markers we infer minimum decadal-scale sediment yields of 190 to 7400tkm-2yr-1 for a given glacier-surface cross-section impacted by episodic rock-slope failure. These rates compare to reported fluvial sediment yields in many mountain rivers, but are an order of magnitude below the extreme sediment yields measured at the snouts of Alaskan glaciers, indicating that the bulk of debris discharged derives from en-glacial, sub-glacial or ice-proximal sources. We estimate an average minimum para-glacial erosion rate by large, episodic rock-slope failures at 0 center dot 5-0 center dot 7mmyr-1 in the Chugach Mountains over a 50-yr period, with earthquakes likely being responsible for up to 73% of this rate. Though ranking amongst the highest decadal landslide erosion rates for this size of study area worldwide, our inferred rates of hillslope erosion in the Chugach Mountains remain an order of magnitude below the pace of extremely rapid glacial sediment export and glacio-isostatic surface uplift previously reported from the region. KW - glacier KW - landslide KW - erosion rate KW - sediment yield KW - Alaska Y1 - 2013 U6 - https://doi.org/10.1002/esp.3311 SN - 0197-9337 VL - 38 IS - 7 SP - 675 EP - 682 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Vormoor, Klaus Josef A1 - Skaugen, Thomas T1 - Temporal disaggregation of daily temperature and precipitation grid data for Norway JF - Journal of hydrometeorology N2 - This paper presents a simple approach for the temporal disaggregation from daily to 3-hourly observed gridded temperature and precipitation (1 x 1km(2)) on the national scale. The intended use of the disaggregated 3-hourly data is to recalibrate the hydrological model currently used by the Norwegian Water Resources and Energy Directorate (NVE) for daily flood forecasting. By adapting the hydrological model to a 3-hourly temporal scale, the flood forecasting can benefit from available meteorological forecasts with finer temporal resolution and can better represent critical events of short duration and at small spatial scales. By consulting the temporal patterns of a High-Resolution Limited-Area Model (HIRLAM) hindcast series for northern Europe with an hourly temporal and a 0.1 degrees spatial resolution, existing daily 1 x 1km(2) grids for temperature and precipitation covering all of Norway (the seNorge data) were disaggregated into 3-hourly values for the time period September 1957 to December 2010. For the period 2000-05, the disaggregated 3-hourly temperature and precipitation data are validated against observed values from five meteorological stations and against 3-hourly data from the HIRLAM hindcast and daily seNorge data simply split into eight fractions. The results show that the disaggregated data perform best with anomaly correlation coefficients between 0.89 and 0.92 for temperature. With regard to precipitation, the disaggregated data also provide the highest correlations and the lowest errors. In addition, the disaggregated data prove to be best in estimating intervals without precipitation and tend to be most appropriate in estimating extreme precipitation with low occurrence probability (<20%). Y1 - 2013 U6 - https://doi.org/10.1175/JHM-D-12-0139.1 SN - 1525-755X VL - 14 IS - 3 SP - 989 EP - 999 PB - American Meteorological Soc. CY - Boston ER - TY - JOUR A1 - Walter, Marius J. A1 - Trauth, Martin H. T1 - A MATLAB based orientation analysis of Acheulean handaxe accumulations in Olorgesailie and Kariandusi, Kenya Rift JF - Journal of human evolution N2 - The Pleistocene archeological record in East Africa has revealed unusual accumulations of Acheulean handaxes at prehistoric sites. In particular, there has been intensive debate concerning whether the artifact accumulation at the Middle Pleistocene Olorgesailie (Southern Kenya Rift) and Kariandusi (Central Kenya Rift) sites were a result of fluvial reworking or of in situ deposition by hominids. We used a two-step approach to test the hypothesis of fluvial reworking. Firstly, the behavior of handaxes in water currents was investigated in a current flume and the flow threshold required to reorientate the handaxes was determined. The results of these experiments suggested that, in relatively high energy and non-steady flow conditions, handaxes will reorientate themselves perpendicular to the current direction. Secondly, an automated image analysis routine was developed and applied to archeological plans from three Acheulean sites, two at Olorgesailie and one at Kariandusi, in order to determine the orientations of the handaxes. A Rayleigh test was then applied to the orientation data to test for a preferred orientation. The results revealed that the handaxes at the Upper Kariandusi Site and the Olorgesailie Main Site Mid Trench had a preferential orientation, suggesting reworking by a paleocurrent. The handaxes from the Olorgesailie Main Site H/6A, however, appeared to be randomly oriented and in situ deposition by the producers therefore remains a possibility. KW - Excavation plan KW - Artifact KW - Flume channel KW - Shape detection KW - Rayleigh test Y1 - 2013 U6 - https://doi.org/10.1016/j.jhevol.2013.02.011 SN - 0047-2484 VL - 64 IS - 6 SP - 569 EP - 581 PB - Elsevier CY - London ER - TY - JOUR A1 - Thiede, Rasmus Christoph A1 - Ehlers, Todd T1 - Large spatial and temporal variations in Himalayan denudation JF - Earth & planetary science letters N2 - In the last decade growing interest has emerged in quantifying the spatial and temporal variations in mountain building. Until recently, insufficient data have been available to attempt such a task at the scale of large orogens such as the Himalaya. The Himalaya accommodates ongoing convergence between India and Eurasia and is a focal point for studying orogen evolution and hypothesized interactions between tectonics and climate. Here we integrate 1126 published bedrock mineral cooling ages with a transient 1D Monte-Carlo thermal-kinematic erosion model to quantify the denudation histories along similar to 2700 km of the Himalaya. The model free parameter is a temporally variable denudation rate from 50 Ma to present. Thermophysical material properties and boundary conditions were tuned to individual study areas. Monte-Carlo simulations were conducted to identify the range of denudation histories that can reproduce the observed cooling ages. Results indicate large temporal and spatial variations in denudation and these are resolvable across different tectonic units of the Himalaya. More specifically, across > 1000 km of the southern Greater Himalaya denudation rates were highest (similar to 1.5-3 mm/yr) between similar to 10 and 2 Ma and lower (0.5-2.6 mm/yr) over the last 2 My. These differences are best determined in the NW-Himalaya. In contrast to this, across the similar to 2500 km length of the northern Greater Himalaya denudation rates vary over length scales of similar to 300-1700 km. Slower denudation (<1 mm/yr) occurred between 10 and 4 Ma followed by a large increase (1.2-2.6 mm/yr) in the last similar to 4 Ma. We find that only the southern Greater Himalayan Sequence clearly supports a continuous co-evolution of tectonics, climate and denudation. Results from the higher elevation northern Greater Himalaya suggest either tectonic driven variations in denudation due to a ramp-flat geometry in the main decollement and/or recent glacially enhanced denudation. KW - Himalaya KW - exhumation KW - low temperature chronology KW - thermal modeling KW - erosion Y1 - 2013 U6 - https://doi.org/10.1016/j.epsl.2013.03.004 SN - 0012-821X VL - 371 IS - 2 SP - 278 EP - 293 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Thiede, Rasmus Christoph A1 - Sobel, Edward A1 - Chen, Jie A1 - Schoenbohm, Lindsay M. A1 - Stockli, Daniel F. A1 - Sudo, Masafumi A1 - Strecker, Manfred T1 - Late Cenozoic extension and crustal doming in the India-Eurasia collision zone new thermochronologic constraints from the NE Chinese Pamir JF - Tectonics N2 - The northward motion of the Pamir indenter with respect to Eurasia has resulted in coeval thrusting, strike-slip faulting, and normal faulting. The eastern Pamir is currently deformed by east-west oriented extension, accompanied by uplift and exhumation of the Kongur Shan (7719m) and Muztagh Ata (7546m) gneiss domes. Both domes are an integral part of the footwall of the Kongur Shan extensional fault system (KES), a 250 km long, north-south oriented graben. Why active normal faulting within the Pamir is primarily localized along the KES and not distributed more widely throughout the orogen has remained unclear. In addition, relatively little is known about how deformation has evolved throughout the Cenozoic, despite refined estimates on present-day crustal deformation rates and microseismicity, which indicate where crustal deformation is presently being accommodated. To better constrain the spatiotemporal evolution of faulting along the KES, we present 39 new apatite fission track, zircon U-Th-Sm/He, and Ar-40/Ar-39 cooling ages from a series of footwall transects along the KES graben shoulder. Combining these data with present-day topographic relief, 1-D thermokinematic and exhumational modeling documents successive stages, rather than synchronous deformation and gneiss dome exhumation. While the exhumation of the Kongur Shan commenced during the late Miocene, extensional processes in the Muztagh Ata massif began earlier and have slowed down since the late Miocene. We present a new model of synorogenic extension suggesting that thermal and density effects associated with a lithospheric tear fault along the eastern margin of the subducting Alai slab localize extensional upper plate deformation along the KES and decouple crustal motion between the central/western Pamir and eastern Pamir/Tarim basin. KW - Pamir KW - gneiss domes KW - collision KW - extension KW - thermochronology KW - exhumation Y1 - 2013 U6 - https://doi.org/10.1002/tect.20050 SN - 0278-7407 VL - 32 IS - 3 SP - 763 EP - 779 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Macaulay, Euan A. A1 - Sobel, Edward A1 - Mikolaichuk, Alexander A1 - Landgraf, Angela A1 - Kohn, Barry A1 - Stuart, Finlay T1 - Thermochronologic insight into late Cenozoic deformation in the basement-cored Terskey Range, Kyrgyz Tien Shan JF - Tectonics N2 - Basement-cored ranges formed by reverse faulting within intracontinental mountain belts are often composed of poly-deformed lithologies. Geological data capable of constraining the timing, magnitude, and distribution of the most recent deformational phase are usually missing in such ranges. In this paper, we present new low temperature thermochronological and geological data from a transect through the basement-cored Terskey Range, located in the Kyrgyz Tien Shan. Using these data, we are able to investigate the range's late Cenozoic deformation for the first time. Displacements on reactivated faults are constrained and deformation of thermochronologically derived structural markers is assessed. These structural markers postdate the earlier deformational phases, providing the only record of Cenozoic deformation and of the reactivation of structures within the Terskey Range. Overall, these structural markers have a southern inclination, interpreted to reflect the decreasing inclination of the reverse fault bounding the Terskey Range. Our thermochronological data are also used to investigate spatial and temporal variations in the exhumation of the Terskey Range, identifying a three-stage Cenozoic exhumation history: (1) virtually no exhumation in the Paleogene, (2) increase to slightly higher exhumation rates at similar to 26-20Ma, and (3) significant increase in exhumation starting at similar to 10Ma. KW - Thermochronology KW - Basement-cored ranges KW - Tien Shan KW - Structural geology Y1 - 2013 U6 - https://doi.org/10.1002/tect.20040 SN - 0278-7407 VL - 32 IS - 3 SP - 487 EP - 500 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Loebens, Stefan A1 - Sobel, Edward A1 - Bense, Frithjof A. A1 - Wemmer, Klaus A1 - Dunkl, Istvan A1 - Siegesmund, Siegfried T1 - Refined exhumation history of the northern Sierras Pampeanas, Argentina JF - Tectonics N2 - The Sierra de Aconquija and Cumbres Calchaquies in the thick-skinned northern Sierras Pampeanas, NW Argentina present an ideal setting to investigate the tectonically and erosionally controlled exhumation and uplift history of mountain ranges using thermochronological methods. Although these ranges are located along strike of one another, their spatiotemporal evolution varies significantly. Integrating modeled cooling histories constrained by K-Ar ages of muscovite and biotite, apatite fission track data as well as (U-Th)/He measurement of zircon and apatite reveal the structural evolution of these ranges beginning in the late stage of the Paleozoic Famatinian Orogeny. Following localized rift-related exhumation in the central part of the study area and slow erosion elsewhere, growth of the modern topography commenced in the Cenozoic during Andean deformation. The main activity occurred during the late Miocene, with varying magnitudes of rock uplift, surface uplift, and exhumation in the two mountain ranges. The Cumbres Calchaquies is characterized by a total of 5-7km of vertical rock uplift, around 3km of crestal surface uplift, and a maximum exhumation of 2-4km since that time. The Sierra de Aconquija experienced 10-13km of vertical rock uplift, similar to 4-5km of peak surface uplift, and 6-8km of exhumation since around 9Ma. Much of this exhumation occurred along a previously poorly recognized fault. Miocene reactivation of Cretaceous rift structures may explain along-strike variations within these ranges. Dating of sedimentary samples from adjacent basins supports the evolutionary model developed for the mountain ranges. KW - Thermochronology KW - Sierras Pampeanas KW - thermal modeling KW - exhumation and uplift Y1 - 2013 U6 - https://doi.org/10.1002/tect.20038 SN - 0278-7407 VL - 32 IS - 3 SP - 453 EP - 472 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Oberhänsli, Roland T1 - High-Pressure - Low-temperature evolution in the Indus-Tsangpo suture along the Kohistan Arc (Kaghan Valley, NE Pakistan) JF - Episodes : journal of international geosciences N2 - North of Naran in the Kaghan Valley (NE Pakistan), the metabasites of the melange units lying below the Kohistan Arc, contain glaucophane. Typically they reflect blueschist-metamorphic conditions (0.7 GPa, 400 degrees C). Associated graphite-rich metapelites with quartz veins underwent upper greenschist to amphibolite conditions. Near Naran we observed in quartz grains of type 3 veins first minute relics of Fe-Mg carpholite indicating earlier blueschist metamorphic conditions. P-T estimates indicate 1.2-1.6 GPa at 380-410 degrees C, pressure and temperature values typical for blueschist metamorphic conditions. Changes in mineral assemblages and abundant sudoite component in associated chlorite point to a pressure drop after peak I conditions. We assign the observed changes to peak I conditions occurring during a Cretaceous subduction event. Temperatures estimated with Raman graphite-thermometry clearly indicate a significant subsequent rise of post-peak I temperatures up to 500 degrees C. This is compatible with the amphibolite peak II assigned to the Tertiary continental collision that leads to subduction of the Indian Plate and ultra-high-pressure metamorphism. During subduction the blueschist metamorphic metapelites underwent dehydration, which caused alteration in the overlying lithospheric mantle. In a hydrated lithospheric mantle density is significantly reduced which enhanced subduction of continental crust in the Higher Himalaya. This P-T evolution is typical for a collision orogen with a high plateau but remarkably contrasting findings from Eastern Anatolia, where plateau building is in "statu nascendi" (e.g., Oberhänsli et al., 2010). Y1 - 2013 SN - 0705-3797 VL - 36 IS - 2 SP - 87 EP - 93 PB - Geological Society of India CY - Bangalore ER - TY - JOUR A1 - Lambert, Ian A1 - Durrheim, Ray A1 - Godoy, Marcio A1 - Kota, Mxolisi A1 - Leahy, Pat A1 - Ludden, John A1 - Nickless, Edmund A1 - Oberhänsli, Roland A1 - Anjian, Wang A1 - Williams, Neil T1 - Resourcing future generations a proposed new IUGS initiative JF - Episodes : journal of international geosciences Y1 - 2013 SN - 0705-3797 VL - 36 IS - 2 SP - 82 EP - 86 PB - Geological Society of India CY - Bangalore ER - TY - JOUR A1 - Mohr, Christian Heinrich A1 - Coppus, Ruben A1 - Iroume, Andres A1 - Huber, Anton A1 - Bronstert, Axel T1 - Runoff generation and soil erosion processes after clear cutting JF - Journal of geophysical research : Earth surface N2 - Timber harvesting by clear cutting is known to impose environmental impacts, including severe disturbance of the soil hydraulic properties which intensify the frequency and magnitude of surface runoff and soil erosion. However, it remains unanswered if harvest areas act as sources or sinks for runoff and soil erosion and whether such behavior operates in a steady state or evolves through time. For this purpose, 92 small-scale rainfall simulations of different intensities were carried out under pine plantation conditions and on two clear-cut harvest areas of different age. Nonparametrical Random Forest statistical models were set up to quantify the impact of environmental variables on the hydrological and erosion response. Regardless of the applied rainfall intensity, runoff always initiated first and yielded most under plantation cover. Counter to expectations, infiltration rates increased after logging activities. Once a threshold rainfall intensity of 20mm/h was exceeded, the younger harvest area started to act as a source for both runoff and erosion after connectivity was established, whereas it remained a sink under lower applied rainfall intensities. The results suggest that the impact of microtopography on surface runoff connectivity and water-repellent properties of the topsoil act as first-order controls for the hydrological and erosion processes in such environments. Fast rainfall-runoff response, sediment-discharge-hystereses, and enhanced postlogging groundwater recharge at catchment scale support our interpretation. At the end, we show the need to account for nonstationary hydrological and erosional behavior of harvest areas, a fact previously unappreciated in predictive models. KW - infiltration KW - runoff KW - erosion KW - connectivity KW - rainfall simulation KW - catchment Y1 - 2013 U6 - https://doi.org/10.1002/jgrf.20047 SN - 2169-9003 VL - 118 IS - 2 SP - 814 EP - 831 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Neill, Christopher A1 - Coe, Michael T. A1 - Riskin, Shelby H. A1 - Krusche, Alex V. A1 - Elsenbeer, Helmut A1 - Macedo, Marcia N. A1 - McHorney, Richard A1 - Lefebvre, Paul A1 - Davidson, Eric A. A1 - Scheffler, Raphael A1 - Figueira, Adelaine Michela e Silva A1 - Porder, Stephen A1 - Deegan, Linda A. T1 - Watershed responses to Amazon soya bean cropland expansion and intensification JF - Philosophical transactions of the Royal Society of London : B, Biological sciences N2 - The expansion and intensification of soya bean agriculture in southeastern Amazonia can alter watershed hydrology and biogeochemistry by changing the land cover, water balance and nutrient inputs. Several new insights on the responses of watershed hydrology and biogeochemistry to deforestation in Mato Grosso have emerged from recent intensive field campaigns in this region. Because of reduced evapotranspiration, total water export increases threefold to fourfold in soya bean watersheds compared with forest. However, the deep and highly permeable soils on the broad plateaus on which much of the soya bean cultivation has expanded buffer small soya bean watersheds against increased stormflows. Concentrations of nitrate and phosphate do not differ between forest or soya bean watersheds because fixation of phosphorus fertilizer by iron and aluminium oxides and anion exchange of nitrate in deep soils restrict nutrient movement. Despite resistance to biogeochemical change, streams in soya bean watersheds have higher temperatures caused by impoundments and reduction of bordering riparian forest. In larger rivers, increased water flow, current velocities and sediment flux following deforestation can reshape stream morphology, suggesting that cumulative impacts of deforestation in small watersheds will occur at larger scales. KW - soya beans KW - watersheds KW - nitrogen KW - phosphorus KW - soil Y1 - 2013 U6 - https://doi.org/10.1098/rstb.2012.0425 SN - 0962-8436 SN - 1471-2970 VL - 368 IS - 1619 PB - Royal Society CY - London ER - TY - JOUR A1 - Yair, Aaron A1 - Bryan, Rorke B. A1 - Lavee, Hanoch A1 - Schwanghart, Wolfgang A1 - Kuhn, Nikolaus J. T1 - The resilience of a badland area to climate change in an arid environment JF - Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution N2 - Badlands have long been considered as model landscapes due to their perceived close relationship between form and process. The often intense features of erosion have also attracted many geomorphologists because the associated high rates of erosion appeared to offer the opportunity for studying surface processes and the resulting forms. Recently, the perceived simplicity of badlands has been questioned because the expected relationships between driving forces for erosion and the resulting sediment yield could not be observed. Further, a high variability in erosion and sediment yield has been observed across scales. Finally, denudation based on currently observed erosion rates would have lead to the destruction of most badlands a long time ago. While the perceived simplicity of badlands has sparked a disproportional (compared to the land surface they cover) amount of research, our increasing amount of information has not necessarily increased our understanding of badlands in equal terms. Overall, badlands appear to be more complex than initially assumed. In this paper, we review 40 years of research in the Zin Valley Badlands in Israel to reconcile some of the conflicting results observed there and develop a perspective on the function of badlands as model landscapes. While the data collected in the Zin Valley clearly confirm that spatial and temporal patterns of geomorphic processes and their interaction with topography and surface properties have to be understood, we still conclude that the process of realizing complexity in the "simple" badlands has a model function both for our understanding as well as perspective on all landscape systems. KW - Badlands KW - Model landscape KW - Climate change KW - Resilience Y1 - 2013 U6 - https://doi.org/10.1016/j.catena.2012.04.006 SN - 0341-8162 VL - 106 IS - 4 SP - 12 EP - 21 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Donner, Stefanie A1 - Rößler, Dirk A1 - Krüger, Frank A1 - Ghods, Abdolreza A1 - Strecker, Manfred T1 - Segmented seismicity of the M (w) 6.2 Baladeh earthquake sequence (Alborz Mountains, Iran) revealed from regional moment tensors JF - Journal of seismology N2 - The M (w) 6.2 Baladeh earthquake occurred on 28 May 2004 in the Alborz Mountains, northern Iran. This earthquake was the first strong shock in this intracontinental orogen for which digital regional broadband data are available. The Baladeh event provides a rare opportunity to study fault geometry and ongoing deformation processes using modern seismological methods. A joint inversion for hypocentres and a velocity model plus a surface-wave group dispersion curve analysis were used to obtain an adapted velocity model, customised for mid- and long-period waveform modelling. Based on the new velocity model, regional waveform data of the mainshock and larger aftershocks (M (w) a parts per thousand yen3.3) were inverted for moment tensors. For the Baladeh mainshock, this included inversion for kinematic parameters. All analysed earthquakes show dominant thrust mechanisms at depths between 14 and 26 km, with NW-SE striking fault planes. The mainshock ruptured a 28A degrees south-dipping area of 24 x 21 km along a north-easterly direction. The rupture plane of the mainshock does not coincide with the aftershock distribution, neither in map view nor with respect to depth. The considered aftershocks form two main clusters. The eastern cluster is associated with the mainshock. The western cluster does not appear to be connected with the rupture plane of the mainshock but, instead, indicates a second activated fault plane dipping at 85A degrees towards the north. KW - Alborz Mountains KW - Iran KW - Baladeh earthquake KW - Inversion for moment tensors KW - Seismotectonics Y1 - 2013 U6 - https://doi.org/10.1007/s10950-013-9362-7 SN - 1383-4649 VL - 17 IS - 3 SP - 925 EP - 959 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Scott, James M. A1 - Konrad-Schmolke, Matthias A1 - O'Brien, Patrick J. A1 - Günter, Christina T1 - High-T, low-P formation of rare olivine-bearing symplectites in variscan eclogite JF - Journal of petrology N2 - Extremely rare veinlets and reaction textures composed of symplectites of olivine (similar to Fo(43-55)) + plagioclase +/- spinel +/- ilmenite, associated with more common pyroxene + plagioclase and amphibole + plagioclase varieties, are preserved within eclogites and garnet pyroxenites in the Moldanubian Zone of the Bohemian Massif. Thermodynamic modelling integrated with conventional geothermometry conducted on an eclogite reveals that the symplectite-forming stage occurred at high T (similar to 850 degrees C) and low P (< 6 and > 2 center dot 5 kbar). The development of the different symplectite types reflects reactions that took place in micro-scale domains. The breakdown of high-P garnet controlled the formation of olivine-bearing and amphibole + plagioclase symplectites, whereas breakdown of high-P omphacite led to formation of pyroxene + plagioclase symplectites. In addition, post-eclogite facies but pre-symplectite stage porphyroblastic amphibole and phlogopite were also replaced by olivine-bearing symplectites. Material transfer calculations and thermodynamic modelling indicate that the formation of different symplectite types was linked despite their different bulk compositions. For example, the olivine-bearing symplectites gained Fe +/- Mg, whereas adjacent amphibole + plagioclase and pyroxene + plagioclase symplectites show losses in Fe and Mg; Al, Si and Ca were also variably exchanged. The olivine-bearing symplectites were particularly sensitive to Na despite the small concentration of this element. In eclogites where Na was readily available, the plagioclase composition in the olivine-bearing symplectites shifted from pure anorthite to bytownite, with the less calcic feldspar partitioning Si and inhibiting the formation of orthopyroxene. This regional high-T, low-P granulite-facies symplectite overprint may have been caused by advective heat loss from rapidly exhumed high-T, high-P granulitic bodies (Gfohl Unit) that were emplaced into and over the middle crust (Monotonous and Varied Series) during Carboniferous continent-continent collision. KW - olivine KW - symplectite KW - eclogite KW - thermodynamics KW - Variscan Y1 - 2013 U6 - https://doi.org/10.1093/petrology/egt015 SN - 0022-3530 SN - 1460-2415 VL - 54 IS - 7 SP - 1375 EP - 1398 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Tu, Rui A1 - Ge, Maorong A1 - Zhang, Hongping A1 - Huang, Guanwen T1 - The realization and convergence analysis of combined PPP based on raw observation JF - Advances in space research N2 - In order to speed up Precise Point Positioning (PPP)'s convergence, a combined PPP method with GPS and GLONASS which is based on using raw observations is proposed, and the positioning results and convergence time have been compared with that of single system. The ionospheric delays and receiver's Differential Code Bias (DCB) corrections are estimated as unknown parameters in this method. The numerical results show that the combined PPP has not caused significant impacts on the final solutions, but it greatly improved Position Dilution of Precision (PDOP) and convergence speed and enhanced the reliability of the solution. Meanwhile, the convergence speed is greatly influenced by the receiver's DCB, positioning results in horizontal which are better than 10 cm can be realized within 10 min. In addition, the ionosphere and DCB products can be provided with high precision. KW - GPS and GLONASS KW - Precise Point Positioning KW - Raw observation KW - DCB KW - Combine Y1 - 2013 U6 - https://doi.org/10.1016/j.asr.2013.03.005 SN - 0273-1177 VL - 52 IS - 1 SP - 211 EP - 221 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Grigoli, Francesco A1 - Cesca, Simone A1 - Vassallo, Maurizio A1 - Dahm, Torsten T1 - Automated seismic event location by travel-time stacking an application to mining induced seismicity JF - Seismological research letters Y1 - 2013 U6 - https://doi.org/10.1785/0220120191 SN - 0895-0695 VL - 84 IS - 4 SP - 666 EP - 677 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Omrani, Hadi A1 - Moazzen, Mohssen A1 - Oberhänsli, Roland A1 - Altenberger, Uwe A1 - Lange, Manuela T1 - The Sabzevar blueschists of the North-Central Iranian micro-continent as remnants of the Neotethys-related oceanic crust subduction JF - International journal of earth sciences N2 - The Sabzevar ophiolites mark the Neotethys suture in east-north-central Iran. The Sabzevar metamorphic rocks, as part of the Cretaceous Sabzevar ophiolitic complex, consist of blueschist, amphibolite and greenschist. The Sabzevar blueschists contain sodic amphibole, epidote, phengite, calcite +/- A omphacite +/- A quartz. The epidote amphibolite is composed of sodic-calcic amphibole, epidote, albite, phengite, quartz +/- A omphacite, ilmenite and titanite. The greenschist contains chlorite, plagioclase and pyrite, as main minerals. Thermobarometry of a blueschist yields a pressure of 13-15.5 kbar at temperatures of 420-500 A degrees C. Peak metamorphic temperature/depth ratios were low (similar to 12 A degrees C/km), consistent with metamorphism in a subduction zone. The presence of epidote in the blueschist shows that the rocks were metamorphosed entirely within the epidote stability field. Amphibole schist samples experienced pressures of 5-7 kbar and temperatures between 450 and 550 A degrees C. The presence of chlorite, actinolite, biotite and titanite indicate greenschist facies metamorphism. Chlorite, albite and biotite replacing garnet or glaucophane suggests temperatures of > 300 A degrees C for greenschist facies. The formation of high-pressure metamorphic rocks is related to north-east-dipping subduction of the Neotethys oceanic crust and subsequent closure during lower Eocene between the Central Iranian Micro-continent and Eurasia (North Iran). KW - Central Iranian micro-continent (CIM) KW - Neotethys Ocean KW - Glaucophane schist KW - Sabzevar KW - Iran Y1 - 2013 U6 - https://doi.org/10.1007/s00531-013-0881-9 SN - 1437-3254 VL - 102 IS - 5 SP - 1491 EP - 1512 PB - Springer CY - New York ER - TY - JOUR A1 - Mohsen, Ayman A1 - Asch, Günter A1 - Kind, Rainer A1 - Mechie, James A1 - Weber, Michael H. T1 - The lithosphere-asthenosphere boundary in the eastern part of the Dead Sea Basin (DSB) from S-to-P receiver functions JF - Arabian journal of geosciences N2 - Clear S-to-P converted waves from the crust-mantle boundary (Moho) and lithosphere-asthenosphere boundary (LAB) have been observed on the eastern part of the Dead Sea Basin (DSB), and are used for the determination of the depth of the Moho and the LAB. A temporary network consisting of 18 seismic broad-band stations was operated in the DSB region as part of the DEad Sea Integrated REsearch project for 1.5 years beginning in September 2006. The obtained Moho depth (similar to 35 km) from S-to-P receiver functions agrees well with the results from P-to-S receiver functions and other geophysical data. The thickness of the lithosphere on the eastern part of the DSB is about 75 km. The results obtained here support and confirm previous studies, based on xenolith data, geodynamic modeling, heat flow observations, and S-to-P receiver functions. Therefore, the lithosphere on the eastern part of the DSB and along Wadi Araba has been thinned in the Late Cenozoic, following rifting and spreading of the Red Sea. The thinning of the lithosphere occurred without a concomitant change in the crustal thickness and thus an upwelling of the asthenosphere in the study area is invoked as the cause of the lithosphere thinning. KW - Dead Sea basin KW - S receiver functions KW - Lithosphere Y1 - 2013 U6 - https://doi.org/10.1007/s12517-011-0503-4 SN - 1866-7511 SN - 1866-7538 VL - 6 IS - 7 SP - 2343 EP - 2350 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Hachmöller, Barbara A1 - Paasche, Hendrik T1 - Integration of surface-based tomographic models for zonation and multimodel guided extrapolation of sparsely known petrophysical parameters JF - Geophysics N2 - We integrate the information of multiple tomographic models acquired from the earth's surface by modifying a statistical approach recently developed for the integration of cross-borehole tomographic models. In doing so, we introduce spectral cluster analysis as the new core of the model integration procedure to capture the spatial heterogeneity present in all considered tomographic models and describe this heterogeneity in a fuzzy sense. Because spectral cluster algorithms analyze model structure locally, they are considered relatively robust with regard to systematically and spatially varying imaging capabilities typical for geophysical tomographic surveys conducted on the earth's surface. Using a synthetic aquifer example, a fuzzy spectral cluster algorithm can be used to integrate the information provided by 2D tomographic refraction seismic and DC resistivity surveys. The integrated information in the fuzzy membership domain is then used to derive an integrated zonal geophysical model outlining the major structural units present in both input models. We also explain how the fuzzy membership information can be used to identify optimal locations for sparse logging of additional target parameters, i.e., porosity information in our synthetic example. We demonstrate how this sparse porosity information can be extrapolated based on all tomographic input models. The resultant 2D porosity model matches the original porosity distribution reasonably well within the spatial resolution limits of the underlying tomographic models. Consecutively, we apply this approach to a field data base acquired over a former river channel. Sparse information about natural gamma radiation is available and extrapolated on the basis of the fuzzy membership information obtained by spectral cluster analysis of 2D P-wave velocity and electrical resistivity models. This field data shows that the presented parameter extrapolation procedure is robust, even if the locations of target parameter acquisition have not been optimized with regard to the fuzzy membership information. Y1 - 2013 U6 - https://doi.org/10.1190/GEO2012-0417.1 SN - 0016-8033 VL - 78 IS - 4 SP - EN43 EP - EN53 PB - Society of Exploration Geophysicists CY - Tulsa ER - TY - JOUR A1 - Cao, Xianyong A1 - Ni, Jian A1 - Herzschuh, Ulrike A1 - Wang, Yongbo A1 - Zhao, Yan T1 - A late quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions set up and evaluation JF - Review of palaeobotany and palynology : an international journal N2 - A total of 271 pollen records were selected from a large collection of both raw and digitized pollen spectra from eastern continental Asia (70 degrees-135 degrees E and 18 degrees-55 degrees N). Following pollen percentage recalculations, taxonomic homogenization, and age-depth model revision, the pollen spectra were interpolated at a 500-year resolution and a taxonomically harmonized and temporally standardized fossil pollen dataset established with 226 pollen taxa, covering the last 22 cal lea. Of the 271 pollen records, 85% were published since 1990, with reliable chronologies and high temporal resolutions; of these, 50% have raw data with complete pollen assemblages, ensuring the quality of this dataset The pollen records available for each 500-year time slice are well distributed over all main vegetation types and climatic zones of the study area, making their pollen spectra suitable for paleovegetation and paleoclimate research. Such a dataset can be used as an example for the development of similar datasets for other regions of the world. KW - fossil pollen KW - eastern asia KW - pollen taxa KW - age-depth model KW - resampling Y1 - 2013 U6 - https://doi.org/10.1016/j.revpalbo.2013.02.003 SN - 0034-6667 VL - 194 IS - 13 SP - 21 EP - 37 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rohrmann, Alexander A1 - Heermance, Richard A1 - Kapp, Paul A1 - Cai, Fulong T1 - Wind as the primary driver of erosion in the Qaidam Basin, China JF - Earth & planetary science letters N2 - Deserts are a major source of loess and may undergo substantial wind-erosion as evidenced by yardang fields, deflation pans, and wind-scoured bedrock landscapes. However, there are few quantitative estimates of bedrock removal by wind abrasion and deflation. Here, we report wind-erosion rates in the western Qaidam Basin in central China based on measurements of cosmogenic Be-10 in exhumed Miocene sedimentary bedrock. Sedimentary bedrock erosion rates range from 0.05 to 0.4 mm/yr, although the majority of measurements cluster at 0.125 +/- 0.05 mm/yr. These results, combined with previous work, indicate that strong winds, hyper-aridity, exposure of friable Neogene strata, and ongoing rock deformation and uplift in the western Qaidam Basin have created an environment where wind, instead of water, is the dominant agent of erosion and sediment transport. Its geographic location (upwind) combined with volumetric estimates suggest that the Qaidam Basin is a major source (up to 50%) of dust to the Chinese Loess Plateau to the east. The cosmogenically derived wind erosion rates are within the range of erosion rates determined from glacial and fluvial dominated landscapes worldwide, exemplifying the effectiveness of wind to erode and transport significant quantities of bedrock. KW - wind KW - cosmogenic nuclide-dating KW - earth surface processes KW - Chinese Loess Plateau KW - climate KW - Asia Y1 - 2013 U6 - https://doi.org/10.1016/j.epsl.2013.03.011 SN - 0012-821X VL - 374 SP - 1 EP - 10 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Glombitza, Clemens A1 - Stockhecke, Mona A1 - Schubert, Carsten J. A1 - Vetter, Alexandra A1 - Kallmeyer, Jens T1 - Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia,Turkey) JF - Frontiers in microbiology N2 - As part of the International Continental Drilling Program deep lake drilling project Paleo Van, we investigated sulfate reduction (SR) in deep sediment cores of the saline, alkaline (salinity 21.4%0, alkalinity 155 m mEq-1, pH 9.81) Lake Van, Turkey. The cores were retrieved in the Northern Basin (NB) and at Ahlat Ridge (AR) and reached a maximum depth of 220 m. Additionally, 65-75 cm long gravity cores were taken at both sites. SR rates (SRR) were low (<22 nmol cm-3 day-1) compared to lakes with higher salinity and alkalinity, indicating that salinity and alkalinity are not limiting SR in Lake Van. Both sites differ significantly in rates and depth distribution of SR. In NB, SRR are up to 10 times higher than at AR. SR could be detected down to 19 mblf (meters below lake floor) at NB and down to 13 mblf at AR. Although SRR were lower at AR than at NB, organic matter (OM) concentrations were higher. In contrast, dissolved OM in the pore water at AR contained more macromolecular OM and less low molecular weight OM.VVe thus suggest, that OM content alone cannot be used to infer microbial activity at Lake Van but that quality of OM has an important impact as well. These differences suggest that biogeochemical processes in lacustrine sediments are reacting very sensitively to small variations in geological, physical, or chemical parameters over relatively short distances. KW - saline lake KW - alkaline lake KW - sulfate reduction KW - deep biosphere KW - organic matter Y1 - 2013 U6 - https://doi.org/10.3389/fmicb.2013.00209 SN - 1664-302X VL - 4 IS - 28 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Regalla, Christine A1 - Kirby, Eric A1 - Fisher, Donald A1 - Bierman, Paul R. T1 - Active forearc shortening in Tohoku, Japan - constraints on fault geometry from erosion rates and fluvial longitudinal profiles JF - Geomorphology : an international journal on pure and applied geomorphology N2 - Convexities in the longitudinal profiles of actively incising rivers are typically considered to represent the morphologic signal of a transient response to external perturbations in tectonic or climatic forcing. Distinguishing such knickzones from those that may be anchored to the channel network by spatial variations in rock uplift, however, can be challenging. Here, we combine stream profile analysis, Be-10 watershed-averaged erosion rates, and numerical modeling of stream profile evolution to evaluate whether knickzones in the Abukuma massif of northeast Japan represent a temporal or spatial change in rock uplift rate in relation to forearc shortening. Knickzones in channels that drain the eastern flank of the Abukuma massif are characterized by breaks in slope-area scaling and separate low-gradient, alluvial upper-channel segments from high-gradient, deeply-incised lower channel segments. Average erosion rates inferred from Be-10 concentrations in modern sediment below knickzones exceed erosion rates above knickzones by 20-50%. Although profile convexities could be interpreted as a transient response to an increase in rock uplift rate associated with slip on the range-bounding fault, geologic constraints on the initiation of fault slip and the magnitude of displacement cannot be reconciled with a recent, spatially uniform increase in slip rate. Rather, we find that knickzone position, stream profile gradients, and basin averaged erosion rates are best explained by a relatively abrupt spatial increase in uplift rate localized above a flat-ramp transition in the fault system. These analyses highlight the importance of considering spatially non-uniform uplift in the interpretation of stream profile evolution and demonstrate that the adjustment of river profiles to fault displacement can provide constraints on fault geometry in actively eroding landscapes. (C) 2013 Elsevier B.V. All rights reserved. KW - Knickzones KW - Fluvial longitudinal profile KW - Cosmogenic Be-10 erosion rates KW - Basement-involved thrusts KW - Futaba fault KW - Fukushima Prefecture Y1 - 2013 U6 - https://doi.org/10.1016/j.geomorph.2013.04.029 SN - 0169-555X VL - 195 IS - 8 SP - 84 EP - 98 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Rudolph, Nicole A1 - Voss, Sebastian A1 - Moradi, Ahmad B. A1 - Nagl, Stefan A1 - Oswald, Sascha T1 - Spatio-temporal mapping of local soil pH changes induced by roots of lupin and soft-rush JF - Plant and soil N2 - The rhizosphere is a dynamic system strongly influenced by root activity. Roots modify the pH of their surrounding soil causing the soil pH to vary as a function of distance from root surface, location along root axes, and root maturity. Non-invasive imaging techniques provide the possibility to capture pH patterns around the roots as they develop. We developed a novel fluorescence imaging set up and applied to the root system of two lupin (Lupinus albus L., Lupinus angustifolius L.) and one soft-rush (Juncus effusus L.) species. We grew plants in glass containers filled with soil and equipped with fluorescence sensor foils on the container side walls. We gained highly-resolved data on the spatial distribution of H+ around the roots by taking time-lapse images of the samples over the course of several days. We showed how the soil pH in the vicinity of roots developed over time to different values from that of the original bulk soil. The soil pH in the immediate vicinity of the root surface varied greatly along the root length, with the most acidic point being at 0.56-3.36 mm behind the root tip. Indications were also found for temporal soil pH changes due to root maturity. In conclusion, this study shows that this novel optical fluorescence imaging set up is a powerful tool for studying pH developments around roots in situ. KW - Acidification KW - Alkalization KW - Exudates KW - Fluorescence imaging KW - Optical sensors KW - pH mapping KW - Rhizosphere Y1 - 2013 U6 - https://doi.org/10.1007/s11104-013-1775-0 SN - 0032-079X VL - 369 IS - 1-2 SP - 669 EP - 680 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Tian, Fang A1 - Herzschuh, Ulrike A1 - Dallmeyer, Anne A1 - Xu, Qinghai A1 - Mischke, Steffen A1 - Biskaborn, Boris T1 - Environmental variability in the monsoon-westerlies transition zone during the last 1200 years - lake sediment analyses from central Mongolia and supra-regional synthesis JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - A high resolution multi proxy (pollen, grain size, total organic carbon) record from a small mountain lake (Lake Khuisiin; 46.6 degrees N, 101.8 degrees E; 2270 m a.s.l.) in the south eastern Khangai Mountains of central Mongolia has been used to explore changes in vegetation and climate over the last 1200 years. The pollen data indicates that the vegetation changed from dry steppe dominated by Poaceae and Artemisia (ca AD 760-950), to Larix forest steppe (ca AD 950-1170), Larix Betula forest steppe (ca AD 1170-1380), meadow dominated by Cyperaceae and Poaceae (ca AD 1380-1830), and Larix Betula forest steppe (after similar to AD 1830). The cold-wet period between AD 1380 and 1830 may relate to the Little Ice Age. Environmental changes were generally subtle and climate change seems to have been the major driver of variations in vegetation until at least the early part of the 20th century, suggesting that either the level of human activity was generally low, or the relationship between human activity and vegetation did not alter substantially between AD 760 and 1830. A review of centennial scale moisture records from China and Mongolia revealed that most areas experienced major changes at ca AD 1500 and AD 1900. However, the moisture availability since AD 1500 varied between sites, with no clear regional pattern or relationship to present day conditions. Both the reconstructions and the moisture levels simulation on a millennium scale performed in the MPI Earth System Model indicate that the monsoon-westerlies transition area shows a greater climate variability than those areas influenced by the westerlies, or by the summer monsoon only. KW - Pollen KW - Grain size KW - TOC KW - Asian monsoon KW - Westerlies KW - Late Holocene KW - Vegetation change KW - Mongolia Y1 - 2013 U6 - https://doi.org/10.1016/j.quascirev.2013.05.005 SN - 0277-3791 VL - 73 IS - 2 SP - 31 EP - 47 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Meere, Patrick A. A1 - Mulchrone, Kieran F. A1 - Timmerman, Martin T1 - Shear folding in low-grade metasedimentary rocks - reverse shear along cleavage at a high angle to the maximum compressive stress JF - Geology N2 - Shear folding, which is also referred to as slip folding, involves shear along planes that are oriented approximately parallel to the axial plane of the fold structure. These planes, which are typically axial-planar cleavage planes, facilitate high-angle reverse slip leading to fold limb rotation and amplification. This study builds on recent advances in our understanding of the role of weak fault zones in facilitating slip on misoriented faults; i.e., faults at a high angle to the maximum principal tectonic stress (sigma(1)). Analysis of folded marine sedimentary rocks from the Variscan of southern Ireland provides unambiguous microstructural evidence for reverse shear on chemically weakened cleavage domains. Significant silica loss in these cleavage domains, and as a consequence marked mechanical weakening, is seen as the primary cause for the reverse slip associated with the shear folding of these sedimentary rocks. Y1 - 2013 U6 - https://doi.org/10.1130/G34150.1 SN - 0091-7613 VL - 41 IS - 8 SP - 879 EP - 882 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Schertl, Hans-Peter A1 - O'Brien, Patrick T1 - Continental crust at mantle depths - key minerals and microstructures JF - Elements : an international magazine of mineralogy, geochemistry, and petrology N2 - Finding evidence for ultrahigh-pressure (UHP) metamorphism in crustal rocks is far from straightforward. The index minerals coesite and diamond are incredibly inconspicuous and are therefore difficult to use as UHP prospecting tools. Consequently, petrographers rely on recognizing subtle breakdown microstructures that result from pressure release during the return to the surface of the once deeply buried rock. Similarly, many other UHP minerals are first suspected on the basis of typical reaction or exsolution microstructures. Thus, the painstaking use of microscopic techniques has been fundamental to the tremendous advances in characterizing, quantifying, and understanding macroscopic-scale, deep continental subduction, rapid exhumation, and mountain-building processes. KW - ultrahigh-pressure KW - coesite KW - microdiamond KW - majorite KW - exsolution microstructures KW - polymorphism Y1 - 2013 U6 - https://doi.org/10.2113/gselements.9.4.261 SN - 1811-5209 SN - 1811-5217 VL - 9 IS - 4 SP - 261 EP - 266 PB - Mineralogical Society of America CY - Chantilly ER - TY - JOUR A1 - Kaiser, Björn Onno A1 - Cacace, Mauro A1 - Scheck-Wenderoth, Magdalena T1 - Quaternary channels within the Northeast German Basin and their relevance on double diffusive convective transport processes - constraints from 3-D thermohaline numerical simulations JF - Geochemistry, geophysics, geosystems N2 - The internal geological structure of the Northeast German Basin (NEGB) is affected by intense salt diapirism and by the presence of several stratified aquifer complexes of regional relevance. The shallow Quaternary to late Tertiary freshwater aquifer is separated from the underlying Mesozoic saline aquifers by an embedded Tertiary clay enriched aquitard (Rupelian Aquitard). An important feature of this aquitard is that hydraulic connections between the upper and lower aquifers do exist in areas where the Rupelian Aquitard is missing (hydrogeological windows). Three-dimensional thermohaline numerical simulations are carried out to investigate the effects of such hydrogeological windows in the Rupelian Aquitard on the resulting groundwater, temperature, and salinity distributions. Numerical results suggest that hydrogeological windows act as preferential domains of hydraulic interconnectivity between the different aquifers at depth and enable vigorous heat and mass transport which causes a mixing of warm and saline groundwater with cold and less saline groundwater within both aquifers. In areas where the Rupelian Aquitard confines the Mesozoic aquifer, dissolved solutes from major salt structures are transported laterally giving rise to plumes of variable salinity content ranging from few hundreds of meters to several tens of kilometers. Furthermore, destabilizing thermal buoyancy forces may overwhelm counteracting stabilizing salinity induced forces offside of salt domes. This may result in buoyant upward groundwater flow transporting heat and mass to shallower levels within the same Mesozoic Aquifer. KW - double diffusive convection KW - thermohaline processes KW - numerical simulations KW - salt structures KW - Northeast German Basin KW - quarternary channels Y1 - 2013 U6 - https://doi.org/10.1002/ggge.20192 SN - 1525-2027 VL - 14 IS - 8 SP - 3156 EP - 3175 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Gocke, Martina A1 - Liang, Wu A1 - Sommer, Michael A1 - Kuzyakov, Yakov T1 - Silicon uptake by wheat - effects of Si pools and pH JF - Journal of plant nutrition and soil science = Zeitschrift für Pflanzenernährung und Bodenkunde N2 - Silicon (Si), although not considered essential, has beneficial effects on plant growth which are mostly associated with the ability to accumulate amorphous (phytogenic) Si, e.g., as phytoliths. Phytogenic Si is the most active Si pool in the soil-plant system because of its great surface-to-volume ratio, amorphous structure, and high water solubility. Despite the high abundance of Si in terrestrial biogeosystems and its importance, e.g., for the global C cycle, little is known about Si fluxes between soil and plants and Si pools used by plants. This study aims at elucidating the contribution of various soil Si pools to Si uptake by wheat. As pH affects dissolution of Si pools and Si uptake by plants, the effect of pH (4.5 and 7) was evaluated. Wheat was grown on Si-free pellets mixed with one of the following Si pools: quartz sand (crystalline), anorthite powder (crystalline), or silica gel (amorphous). Silicon content was measured in aboveground biomass, roots, and soil solution 4 times in intervals of 7 d. At pH 4.5, plants grew best on anorthite, but pH did not significantly affect Si-uptake rates. Total Si contents in plant biomass were significantly higher in the silica-gel treatment compared to all other treatments, with up to 26 mg g(-1) in aboveground biomass and up to 17 mg g(-1) in roots. Thus, Si uptake depends on the conversion of Si into plant-available silicic acid. This conversion occurs too slowly for crystalline Si phases, therefore Si uptake from treatments with quartz sand and anorthite did not differ from the control. For plants grown on silica gel, real Si-uptake rates were higher than the theoretical value calculated based on water transpiration. This implies that Si uptake by wheat is driven not only by passive water flux but also by active transporters, depending on Si concentration in the aqueous phase, thus on type of Si pool. These results show that Si uptake by plants as well as plant growth are significantly affected by the type of Si pool and factors controlling its solubility. KW - anorthite KW - global Si cycle KW - phytogenic silica KW - quartz KW - silica gel KW - soil Si pools KW - Triticum aestivum L Y1 - 2013 U6 - https://doi.org/10.1002/jpln.201200098 SN - 1436-8730 SN - 1522-2624 VL - 176 IS - 4 SP - 551 EP - 560 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Reichstein, Markus A1 - Bahn, Michael A1 - Ciais, Philippe A1 - Frank, Dorothea A1 - Mahecha, Miguel D. A1 - Seneviratne, Sonia I. A1 - Zscheischler, Jakob A1 - Beer, Christian A1 - Buchmann, Nina A1 - Frank, David C. A1 - Papale, Dario A1 - Rammig, Anja A1 - Smith, Pete A1 - Thonicke, Kirsten A1 - van der Velde, Marijn A1 - Vicca, Sara A1 - Walz, Ariane A1 - Wattenbach, Martin T1 - Climate extremes and the carbon cycle JF - Nature : the international weekly journal of science N2 - The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Continuing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that climate extremes such as droughts or storms can lead to a decrease in regional ecosystem carbon stocks and therefore have the potential to negate an expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget. Y1 - 2013 U6 - https://doi.org/10.1038/nature12350 SN - 0028-0836 VL - 500 IS - 7462 SP - 287 EP - 295 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Wiesmeier, Martin A1 - Hübner, Rico A1 - Barthold, Frauke Katrin A1 - Spörlein, Peter A1 - Geuss, Uwe A1 - Hangen, Edzard A1 - Reischl, Arthur A1 - Schilling, Bernd A1 - von Lützow, Margit A1 - Kögel-Knabner, Ingrid T1 - Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria) JF - Agriculture, ecosystems & environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere N2 - Agricultural soils have a high potential for sequestration of atmospheric carbon due to their volume and several promising management options. However, there is a remarkable lack of information about the status quo of organic carbon in agricultural soils. In this study a comprehensive data set of 384 cropland soils and 333 grassland soils within the state of Bavaria in southeast Germany was analyzed in order to provide representative information on total amount, regional distribution and driving parameters of soil organic carbon (SOC) and nitrogen (N) in agricultural soils of central Europe. The results showed that grassland soils stored higher amounts of SOC (11.8 kg m(-2)) and N (0.92 kg m(-2)) than cropland soils (9.0 and 0.66 kg m(-2), respectively) due to moisture-induced accumulation of soil organic matter (SOM) in B horizons. Surprisingly, no distinct differences were found for the A horizons since tillage led to a relocation of SOM with depth in cropland soils. Statistical analyses of driving factors for SOM storage revealed soil moisture, represented by the topographic wetness index (TWI), as the most important parameter for both cropland and grassland soils. Climate effects (mean annual temperature and precipitation) were of minor importance in agricultural soils because management options counteracted them to a certain extent, particularly in cropland soils. The distribution of SOC and N stocks within Bavaria based on agricultural regions confirmed the importance of soil moisture since the highest cropland SOC and N stocks were found for tertiary hills and loess regions, which exhibited large areas with potentially high soil moisture content in extant floodplains. Grassland soils showed the highest accumulation of SOC and N in the Alps and Pre-Alps as a result of low temperatures, high amounts of precipitation and high soil moisture content in areas of glacial denudation. Soil class was identified as a further driving parameter for SOC and N storage in cropland soils. In total, cropland and grassland soils in Bavaria store 242 and 134 Mt SOC as well as 19 and 12 Mt N down to a soil depth of 1 m or the parent material, respectively. KW - Soil organic carbon stocks KW - Topographic Wetness Index (TWI) KW - Soil moisture KW - Carbon sequestration KW - Agricultural soils Y1 - 2013 U6 - https://doi.org/10.1016/j.agee.2013.05.012 SN - 0167-8809 VL - 176 IS - 32 SP - 39 EP - 52 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Tomas, Sara A1 - Homann, Martin A1 - Mutti, Maria A1 - Amour, Frederic A1 - Christ, Nicolas A1 - Immenhauser, Adrian A1 - Agar, Susan M. A1 - Kabiri, Lahcen T1 - Alternation of microbial mounds and ooid shoals (Middle Jurasssic, Morocco) - response to paleoenvironmental changes JF - Sedimentary geology : international journal of applied and regional sedimentology N2 - The occurrence of neritic microbial carbonates is often related to ecological refuges, where grazers and other competitors are reduced by environmental conditions, or to post-extinction events (e.g. in the Late Devonian, Early Triassic). Here, we present evidence for Middle Jurassic (Bajocian) microbial mounds formed in the normal marine, shallow neritic setting of an inner, ramp system from the High Atlas of Morocco. The microbial mounds are embedded in cross-bedded oolitic facies. Individual mounds show low relief domal geometries (up to 3 m high and 4.5 m across), but occasionally a second generation of mounds exhibits tabular geometries (<1 m high). The domes are circular in plan view and have intact tops, lacking evidence of current influence on mound preferred growth direction or distribution patterns, or truncation. The mound fades consists almost entirely of non-laminated, micritic thrombolites with branching morphologies and fine-grained, clotted and peloidal fabrics. Normal marine biota are present but infrequent. Several lines of evidence document that microbial mound growth alternates with time intervals of active ooid shoal deposition. This notion is of general significance when compared with modern Bahamian microbialites that co-exist with active sub-aquatic dunes. Furthermore, the lack of detailed studies of Middle Jurassic, normal marine shallow neritic microbial mounds adds a strong motivation for the present study. Specifically, Bajocian mounds formed on a firmground substratum during transgressive phases under condensed sedimentation. Furthermore, a transient increase in nutrient supply in the prevailing mesotrophic setting, as suggested by the heterotrophic-dominated biota, may have controlled microbial mound stages. KW - Microbial mounds KW - Thrombolites KW - Ooid shoals KW - Paleoenvironment KW - Jurassic Y1 - 2013 U6 - https://doi.org/10.1016/j.sedgeo.2013.05.008 SN - 0037-0738 VL - 294 SP - 68 EP - 82 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Hund, Silja V. A1 - Brown, Sandra A1 - Lavkulich, Les M. A1 - Oswald, Sascha T1 - Relating P Lability in Stream Sediments to Watershed Land Use via an Effective Sequential Extraction Scheme JF - Water, air & soil pollution : an international journal of environmental pollution N2 - High applications of P fertilizers and manure are general practice in intensive agriculture and may cause eutrophication in adjacent streams. Bioavailability of P can be estimated by sequential extractions commonly used for soil or sediment. A single combined method may facilitate more effective comparisons of topsoils and adjoining stream sediments, and enhance management decisions. In this study, the suitability of an established soil P sequential extraction was tested on stream bed sediments. The study was conducted in the Sumas River watershed in the agricultural Lower Fraser Valley, Canada. Sediment samples with differing land use (forest, low and high intensity agriculture) from 1993, 1994, 2008, and 2009 from 14 sites along the Sumas River and tributaries were used. Total sequential extraction concentrations were in agreement with aqua regia digestion (Rs=0.96) and showed consistency over the study time sequence. P fractions released by 0.5 M NaHCO3 (median 14 %), 0.1 M NaOH (33 %), and 1.0 M HCl (38 %) were significantly (alpha=0.05) higher than P released by other extractants. These three extraction steps provide a practical and time-effective assessment of P lability in stream sediments and may be used as a combined scheme for sediment and soil. Analytical results further revealed that land use has a major and characteristic impact on P lability. With a land use change from forest to intensive agriculture, results showed an increase in total P concentrations (30 to 4,000 ppm) and in P lability, in particular for the moderately labile NaOH-P fraction (20 to 50 %). KW - Phosphorus KW - Eutrophication KW - Availability KW - Sequential extraction KW - Agriculture KW - River bed sediment Y1 - 2013 U6 - https://doi.org/10.1007/s11270-013-1643-9 SN - 0049-6979 SN - 1573-2932 VL - 224 IS - 9 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Hoffmann, Bernd A1 - Kahmen, Ansgar A1 - Cernusak, Lucas A. A1 - Arndt, Stefan K. A1 - Sachse, Dirk T1 - Abundance and distribution of leaf wax n-alkanes in leaves of Acacia and Eucalyptus trees along a strong humidity gradient in northern Australia JF - Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry N2 - Environmental parameters such as rainfall, temperature and relative humidity can affect the composition of higher plant leaf wax. The abundance and distribution of leaf wax biomarkers, such as long chain n-alkanes, in sedimentary archives have therefore been proposed as proxies reflecting climate change. However, a robust palaeoclimatic interpretation requires a thorough understanding of how environmental changes affect leaf wax n-alkane distributions in living plants. We have analysed the concentration and chain length distribution of leaf wax n-alkanes in Acacia and Eucalyptus species along a 1500 km climatic gradient in northern Australia that ranges from subtropical to arid. We show that aridity affected the concentration and distribution of n-alkanes for plants in both genera. For both Acacia and Eucalyptus n-alkane concentration increased by a factor of ten to the dry centre of Australia, reflecting the purpose of the wax in preventing water loss from the leaf. Furthermore, Acacian-alkanes decreased in average chain length (ACL) towards the arid centre of Australia, whereas Eucalyptus ACL increased under arid conditions. Our observations demonstrate that n-alkane concentration and distribution in leaf wax are sensitive to hydroclimatic conditions. These parameters could therefore potentially be employed in palaeorecords to estimate past environmental change. However, our finding of a distinct response of n-alkane ACL values to hydrological changes in different taxa also implies that the often assumed increase in ACL under drier conditions is not a robust feature for all plant species and genera and as such additional information about the prevalent vegetation are required when ACL values are used as a palaeoclimate proxy. Y1 - 2013 U6 - https://doi.org/10.1016/j.orggeochem.2013.07.003 SN - 0146-6380 VL - 62 IS - 9 SP - 62 EP - 67 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - König, Hannes Jochen A1 - Uthes, Sandra A1 - Schuler, Johannes A1 - Zhen, Lin A1 - Purushothaman, Seema A1 - Suarma, Utia A1 - Sghaier, Mongi A1 - Makokha, Stella A1 - Helming, Katharina A1 - Sieber, Stefan A1 - Chen, Le A1 - Brouwer, Floor A1 - Morris, Jake A1 - Wiggering, Hubert T1 - Regional impact assessment of land use scenarios in developing countries using the FoPIA approach - findings from five case studies JF - Journal of environmental management N2 - The impact of land use changes on sustainable development is of increasing interest in many regions of the world. This study aimed to test the transferability of the Framework for Participatory Impact Assessment (FoPIA), which was originally developed in the European context, to developing countries, in which lack of data often prevents the use of data-driven impact assessment methods. The core aspect of FoPIA is the stakeholder-based assessment of alternative land use scenarios. Scenario impacts on regional sustainability are assessed by using a set of nine regional land use functions (LUFs), which equally cover the economic, social and environmental dimensions of sustainability. The cases analysed in this study include (1) the alternative spatial planning policies around the Merapi volcano and surrounding areas of Yogyakarta City, Indonesia; (2) the large-scale afforestation of agricultural areas to reduce soil erosion in Guyuan, China; (3) the expansion of soil and water conservation measures in the Oum Zessar watershed, Tunisia; (4) the agricultural intensification and the potential for organic agriculture in Bijapur, India; and (5) the land degradation and land conflicts resulting from land division and privatisation in Narok, Kenya. All five regions are characterised by population growth, partially combined with considerable economic development, environmental degradation problems and social conflicts. Implications of the regional scenario impacts as well as methodological aspects are discussed. Overall, FoPIA proved to be a useful tool for diagnosing regional human-environment interactions and for supporting the communication and social learning process among different stakeholder groups. KW - (Ex-ante) impact assessment KW - Land use change KW - Scenario study KW - Sustainable development KW - Stakeholder participation KW - Developing countries KW - Indicators Y1 - 2013 U6 - https://doi.org/10.1016/j.jenvman.2012.10.021 SN - 0301-4797 SN - 1095-8630 VL - 127 SP - S56 EP - S64 PB - Elsevier CY - London ER - TY - JOUR A1 - Tekken, Vera A1 - Costa, Luís Fílípe Carvalho da A1 - Kropp, Jürgen T1 - Increasing pressure, declining water and climate change in north-eastern Morocco JF - Journal of coastal conservation : planning and management N2 - The coastal stretch of north-eastern Mediterranean Morocco holds vitally important ecological, social, and economic functions. The implementation of large-scale luxury tourism resorts shall push socio-economic development and facilitate the shift from a mainly agrarian to a service economy. Sufficient water availability and intact beaches are among the key requirements for the successful realization of regional development plans. The water situation is already critical, additional water-intense sectors could overstrain the capacity of water resources. Further, coastal erosion caused by sea-level rise is projected. Regional climate change is observable, and must be included in regional water management. Long-term climate trends are assessed for the larger region (Moulouya basin) and for the near-coastal zone at Saidia. The amount of additional water demand is assessed for the large-dimensioned Saidia resort; including the monthly, seasonal and annual tourist per capita water need under inclusion of irrigated golf courses and garden areas. A shift of climate patterns is observed, a lengthening of the dry summer season, and as well a significant decline of annual precipitation. Thus, current water scarcity is mainly human-induced; however, climate change will aggravate the situation. As a consequence, severe environmental damage due to water scarcity is likely and could impinge on the quality of local tourism. The re-adjustment of current management routines is therefore essential. Possible adjustments are discussed and the analysis concludes with management recommendations for innovative regional water management of tourism facilities. KW - North-eastern Morocco KW - Climate change KW - Coastal zone KW - Luxury tourism KW - Water demand KW - Adaptation Y1 - 2013 U6 - https://doi.org/10.1007/s11852-013-0234-7 SN - 1400-0350 VL - 17 IS - 3 SP - 379 EP - 388 PB - Springer CY - New York ER - TY - JOUR A1 - Cammerer, Holger A1 - Thieken, Annegret A1 - Verburg, Peter H. T1 - Spatio-temporal dynamics in the flood exposure due to land use changes in the Alpine Lech Valley in Tyrol (Austria) JF - Natural hazards : journal of the International Society for the Prevention and Mitigation of Natural Hazards N2 - Flood risk is expected to increase in many regions of the world in the next decades with rising flood losses as a consequence. First and foremost, it can be attributed to the expansion of settlement and industrial areas into flood plains and the resulting accumulation of assets. For a future-oriented and a more robust flood risk management, it is therefore of importance not only to estimate potential impacts of climate change on the flood hazard, but also to analyze the spatio-temporal dynamics of flood exposure due to land use changes. In this study, carried out in the Alpine Lech Valley in Tyrol (Austria), various land use scenarios until 2030 were developed by means of a spatially explicit land use model, national spatial planning scenarios and current spatial policies. The combination of the simulated land use patterns with different inundation scenarios enabled us to derive statements about possible future changes in flood-exposed built-up areas. The results indicate that the potential assets at risk depend very much on the selected socioeconomic scenario. The important conditions affecting the potential assets at risk that differ between the scenarios are the demand for new built-up areas as well as on the types of conversions allowed to provide the necessary areas at certain locations. The range of potential changes in flood-exposed residential areas varies from no further change in the most moderate scenario 'Overall Risk' to 119 % increase in the most extreme scenario 'Overall Growth' (under current spatial policy) and 159 % increase when disregarding current building restrictions. KW - Flood risk KW - Land use change KW - Spatial policy KW - Socioeconomic scenarios KW - Mountain basins Y1 - 2013 U6 - https://doi.org/10.1007/s11069-012-0280-8 SN - 0921-030X VL - 68 IS - 3 SP - 1243 EP - 1270 PB - Springer CY - New York ER - TY - JOUR A1 - Herzschuh, Ulrike A1 - Pestryakova, Luidmila Agafyevna A1 - Savelieva, Larissa A. A1 - Heinecke, Liv A1 - Böhmer, Thomas A1 - Biskaborn, Boris A1 - Andreev, Andrei A1 - Ramisch, Arne A1 - Shinneman, Avery L. C. A1 - Birks, H. John B. T1 - Siberian larch forests and the ion content of thaw lakes form a geochemically functional entity JF - Nature Communications N2 - Siberian larch forests growing on shallow permafrost soils have not, until now, been considered to be controlling the abiotic and biotic characteristics of the vast number of thaw-lake ecosystems. Here we show, using four independent data sets (a modern data set from 201 lakes from the tundra to taiga, and three lake-core records), that lake-water geochemistry in Yakutia is highly correlated with vegetation. Alkalinity increases with catchment forest density. We postulate that in this arid area, higher evapotranspiration in larch forests compared with that in the tundra vegetation leads to local salt accumulation in soils. Solutes are transported to nearby thaw lakes during rain events and snow melt, but are not fully transported into rivers, because there is no continuous groundwater flow within permafrost soils. This implies that potentially large shifts in the chemical characteristics of aquatic ecosystems to known warming are absent because of the slow response of catchment forests to climate change. Y1 - 2013 U6 - https://doi.org/10.1038/ncomms3408 SN - 2041-1723 VL - 4 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Hoffmann, Thomas A1 - Schlummer, Manuela A1 - Notebaert, Bastiaan A1 - Verstraeten, Gert A1 - Korup, Oliver T1 - Carbon burial in soil sediments from Holocene agricultural erosion, Central Europe JF - Global biogeochemical cycles N2 - Natural and human-induced erosion supplies high amounts of soil organic carbon (OC) to terrestrial drainage networks. Yet OC fluxes in rivers were considered in global budgets only recently. Modern estimates of annual carbon burial in inland river sediments of 0.6 Gt C, or 22% of C transferred from terrestrial ecosystems to river channels, consider only lakes and reservoirs and disregard any long-term carbon burial in hillslope or floodplain sediments. Here we present the first assessment of sediment-bound OC storage in Central Europe from a synthesis of similar to 1500 Holocene hillslope and floodplain sedimentary archives. We show that sediment storage increases with drainage-basin size due to more extensive floodplains in larger river basins. However, hillslopes retain hitherto unrecognized high amounts of eroded soils at the scale of large river basins such that average agricultural erosion rates during the Holocene would have been at least twice as high as reported previously. This anthropogenic hillslope sediment storage exceeds floodplain storage in drainage basins <10(5) km(2), challenging the notion that floodplains are the dominant sedimentary sinks. In terms of carbon burial, OC concentrations in floodplains exceed those on hillslopes, and net OC accumulation rates in floodplains (0.70.2 g C m(-2)a(-1)) surpass those on hillslopes (0.40.1 g C m(-2)a(-1)) over the last 7500 years. We conclude that carbon burial in floodplains and on hillslopes in Central Europe exceeds terrestrial carbon storage in lakes and reservoirs by at least 2 orders of magnitude and should thus be considered in continental carbon budgets. KW - soil organic carbon KW - human impact KW - soil erosion KW - hillslope KW - floodplain KW - deposition Y1 - 2013 U6 - https://doi.org/10.1002/gbc.20071 SN - 0886-6236 SN - 1944-9224 VL - 27 IS - 3 SP - 828 EP - 835 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Landgraf, Angela A1 - Zielke, Olaf A1 - Arrowsmith, J. Ramón A1 - Ballato, Paolo A1 - Strecker, Manfred A1 - Schildgen, Taylor F. A1 - Friedrich, Anke M. A1 - Tabatabaei, Sayyed-Hassan T1 - Differentiating simple and composite tectonic landscapes using numerical fault slip modeling with an example from the south central Alborz Mountains, Iran JF - Journal of geophysical research : Earth surface N2 - The tectonically driven growth of mountains reflects the characteristics of the underlying fault systems and the applied tectonic forces. Over time, fault networks might be relatively static, but stress conditions could change and result in variations in fault slip orientation. Such a tectonic landscape would transition from a simple to a composite state: the topography of simple landscapes is correlated with a single set of tectonic boundary conditions, while composite landscapes contain inherited topography due to earlier deformation under different boundary conditions. We use fault interaction modeling to compare vertical displacement fields with topographic metrics to differentiate the two types of landscapes. By successively rotating the axis of maximum horizontal stress, we produce a suite of vertical displacement fields for comparison with real landscapes. We apply this model to a transpressional duplex in the south central Alborz Mountains of Iran, where NW oriented compression was superseded by neotectonic NE compression. The consistency between the modeled displacement field and real landforms indicates that the duplex topography is mostly compatible with the modern boundary conditions, but might include a small remnant from the earlier deformation phase. Our approach is applicable for various tectonic settings and represents an approach to identify the changing boundary conditions that produce composite landscapes. It may be particularly useful for identifying changes that occurred in regions where river profiles may no longer record a signal of the change or where the spatial pattern of uplift is complex. KW - fault interaction KW - landscape evolution KW - numerical modeling KW - Alborz Mountains KW - Iran Y1 - 2013 U6 - https://doi.org/10.1002/jgrf.20109 SN - 2169-9003 SN - 2169-9011 VL - 118 IS - 3 SP - 1792 EP - 1805 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Kienel, Ulrike A1 - Plessen, Birgit A1 - Schettler, Georg A1 - Weise, Stephan A1 - Pinkerneil, Sylvia A1 - Boehnel, Harald A1 - Englebrecht, Amy C. A1 - Haug, Gerald H. T1 - Sensitivity of a hypersaline crater lake to the seasonality of rainfall, evaporation, and guano supply JF - Fundamental and applied limnology : official journal of the International Association of Theoretical and Applied Limnology N2 - The hypersaline crater lake and its catchment on seabird island Isabel (Pacific, off Mexico) was studied to explore the influence of strong seasonal variations in rainfall/evaporation and guano contribution on its limnology. The hypersaline lake water (HSW, 78 %) is up to 2.2-times enriched in inert ions relative to mean seawater. Rainfall during summer dilutes the HSW to form a less saline rainwater body (RWB) above a chemolimnion between 2 and 4 m water depth. The RWB is inhabited first by diatoms and ostracods followed later on by cyanobacteria and ciliates. Evaporation of > 1.5 m depth of lake water over the dry season increases the salinity of the RWB until the water column becomes isohaline at HSW concentrations in the late dry season. Differences in the stable isotope composition of water and primary producers in RWB and HSW reflect this development. Introduction of seabird guano and the decrease of salinity fuel a high primary production in the RWB with higher delta(CDIC)-C-13 and delta(13)Corg of particulate organic matter than in the HSW. The high N supply leads to high delta N-15 NH4 values (+ 39 % in the HSW) as the consequence of ammonia volatilization that is strongest during guano maturation and with evaporative salinity increase from the HSW. Precipitation of carbonate (calcite and aragonite) from the RWB and the HSW is hindered by the high concentration of guano-derived P. This inhibition may be overcome with evaporative supersaturation during particularly dry conditions. Carbonate may also precipitate during particularly wet conditions from the dilute RWB, where the P-concentration is reduced during an active phytoplankton production that raises the pH. Differences in the stable isotope signatures of carbon and oxygen in HSW and RWB (+ 5 % delta(CDIC)-C-13 and -3 % d18OH2O) suggest the processes of carbonate precipitation can be distinguished based on the isotope signature of the carbonates deposited. Changes in the lake system are indicated when lower temperatures and higher rainfall in the 2006 wet season introduced more and less mature guano to the lake. The lower pH was accompanied by lower ammonia volatilization and carbonate precipitation as indicated by an increased concentration of NH4, Ca, Sr and DIC, while delta H-2, delta(NNH4)-N-15, and salinity were lower. According to our results, the observed sediment laminations should reflect the introduction of catchment material (including guano) with runoff, the RWB plankton production, and the carbonate precipitation in relation to its origin and seasonality. KW - ammonia volatilization KW - carbonate precipitation KW - chemocline KW - guano KW - hypersaline lake KW - stable isotopes Y1 - 2013 U6 - https://doi.org/10.1127/1863-9135/2013/0405 SN - 1863-9135 VL - 183 IS - 2 SP - 135 EP - 152 PB - Schweizerbart CY - Stuttgart ER - TY - JOUR A1 - Yildirim, Cengiz A1 - Schildgen, Taylor F. A1 - Echtler, Helmut Peter A1 - Melnick, Daniel A1 - Bookhagen, Bodo A1 - Ciner, T. Attila A1 - Niedermann, Samuel A1 - Merchel, Silke A1 - Martschini, Martin A1 - Steier, Peter A1 - Strecker, Manfred T1 - Tectonic implications of fluvial incision and pediment deformation at the northern margin of the Central Anatolian Plateau based on multiple cosmogenic nuclides JF - Tectonics N2 - We document Quaternary fluvial incision driven by fault-controlled surface deformation in the inverted intermontane Gökirmak Basin in the Central Pontide mountains along the northern margin of the Central Anatolian Plateau. In-situ-produced Be-10, Ne-21, and Cl-36 concentrations from gravel-covered fluvial terraces and pediment surfaces along the trunk stream of the basin (the Gökirmak River) yield model exposure ages ranging from 71ka to 34645ka and average fluvial incision rates over the past similar to 350ka of 0.280.01mm a(-1). Similarities between river incision rates and coastal uplift rates at the Black Sea coast suggest that regional uplift is responsible for the river incision. Model exposure ages of deformed pediment surfaces along tributaries of the trunk stream range from 605ka to 110 +/- 10ka, demonstrating that the thrust faults responsible for pediment deformation were active after those times and were likely active earlier as well as explaining the topographic relief of the region. Together, our data demonstrate cumulative incision that is linked to active internal shortening and uplift of similar to 0.3mm a(-1) in the Central Pontide orogenic wedge, which may ultimately contribute to the lateral growth of the northern Anatolian Plateau. KW - Tectonic Geomorphology KW - Fluvial Incision KW - Surface Exposure Age KW - Uplift Rate Y1 - 2013 U6 - https://doi.org/10.1002/tect.20066 SN - 0278-7407 SN - 1944-9194 VL - 32 IS - 5 SP - 1107 EP - 1120 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Klein, Daniel R. A1 - Olonscheck, Mady A1 - Walther, Carsten A1 - Kropp, Jürgen T1 - Susceptibility of the European electricity sector to climate change JF - Energy N2 - The electricity system is particularly susceptible to climate change due to the close interconnectedness between electricity production, consumption and climate. This study provides a country based relative analysis of 21 European countries' electricity system susceptibility to climate change. Taking into account 14 quantitative influencing factors, the susceptibility of each country is examined both for the current and projected system with the result being a relative ranked index. Luxembourg and Greece are the most susceptible relatively due in part to their inability to meet their own electricity consumption demand with inland production, and the fact that the majority of their production is from more susceptible sources, primarily combustible fuels. Greece experiences relatively warm mean temperatures, which are expected to increase in the future leading to greater summer electricity consumption, increasing susceptibility. Norway was found to be the least susceptible, relatively, due to its consistent production surplus, which is primarily from hydro (a less susceptible source) and a likely decrease of winter electricity consumption as temperatures rise due to climate change. The findings of this study enable countries to identify the main factors that increase their electricity system susceptibility and proceed with adaptation measures that are the most effective in decreasing susceptibility. KW - Thermal electricity production KW - Energy security KW - Heating and cooling electricity consumption KW - Vulnerability KW - Air conditioners KW - Electricity generation by source Y1 - 2013 U6 - https://doi.org/10.1016/j.energy.2013.06.048 SN - 0360-5442 VL - 59 IS - 6 SP - 183 EP - 193 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Klemm, Juliane A1 - Herzschuh, Ulrike A1 - Pisaric, Michael F. J. A1 - Telford, Richard J. A1 - Heim, Birgit A1 - Pestryakova, Luidmila Agafyevna T1 - A pollen-climate transfer function from the tundra and taiga vegetation in Arctic Siberia and its applicability to a Holocene record JF - Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences N2 - This study aims to establish, evaluate, and apply a modern pollen-climate transfer function from the transition zone between arctic tundra and light-needled taiga in Arctic Siberia. Lacustrine samples (n = 96) from the northern Siberian lowlands of Yakutia were collected along four north-to-south transects crossing the arctic forest line. Samples span a broad temperature and precipitation gradient (mean July temperature, T-July: 7.5-18.7 degrees C; mean annual precipitation, P-ann: 114-315 mm/yr). Redundancy analyses are used to examine the relationship between the modern pollen signal and corresponding vegetation types and climate. Performance of transfer functions for T-July and P-ann were cross-validated and tested for spatial autocorrelation effects. The root mean square errors of prediction are 1.67 degrees C for T-July and 40 mm/yr for P-ann. A climate reconstruction based on fossil pollen spectra from a Siberian Arctic lake sediment core spanning the Holocene yielded cold conditions for the Late Glacial (1-2 degrees C below present T-July). Warm and moist conditions were reconstructed for the early to mid Holocene (2 degrees C higher T-July than present), and climate conditions similar to modern ones were reconstructed for the last 4000 years. In conclusion, our modern pollen data set fills the gap of existing regional calibration sets with regard to the underrepresented Siberian tundra-taiga transition zone. The Holocene climate reconstruction indicates that the temperature deviation from modern values was only moderate despite the assumed Arctic sensitivity to present climate change. KW - Mean July temperature KW - Reconstruction KW - Weighted-average partial least squares KW - Autocorrelation KW - Yakutia Y1 - 2013 U6 - https://doi.org/10.1016/j.palaeo.2013.06.033 SN - 0031-0182 SN - 1872-616X VL - 386 SP - 702 EP - 713 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Scharf, Anke A1 - Handy, Mark R. A1 - Ziemann, Martin Andreas A1 - Schmid, Stefan M. T1 - Peak-temperature patterns of polyphase metamorphism resulting from accretion, subduction and collision (eastern Tauern Window, European Alps) - a study with Raman microspectroscopy on carbonaceous material (RSCM) JF - Journal of metamorphic geology N2 - Raman microspectroscopy on carbonaceous material (RSCM) from the eastern Tauern Window indicates contrasting peak-temperature patterns in three different fabric domains, each of which underwent a poly-metamorphic orogenic evolution: Domain 1 in the northeastern Tauern Window preserves oceanic units (Glockner Nappe System, Matrei Zone) that attained peak temperatures (T-p) of 350-480 degrees C following Late Cretaceous to Palaeogene nappe stacking in an accretionary wedge. Domain 2 in the central Tauern Window experienced T-p of 500-535 degrees C that was attained either within an exhumed Palaeogene subduction channel or during Oligocene Barrovian-type thermal overprinting within the Alpine collisional orogen. Domain 3 in the Eastern Tauern Subdome has a peak-temperature pattern that resulted from Eo-Oligocene nappe stacking of continental units derived from the distal European margin. This pattern acquired its presently concentric pattern in Miocene time due to post-nappe doming and extensional shearing along the Katschberg Shear Zone System (KSZS). T-p values in the largest (Hochalm) dome range from 612 degrees C in its core to 440 degrees C at its rim. The maximum peak-temperature gradient (70 degrees Ckm(-1)) occurs along the eastern margin of this dome where mylonitic shearing of the Katschberg Normal Fault (KNF) significantly thinned the Subpenninic- and Penninic nappe pile, including the pre-existing peak-temperature gradient. KW - doming KW - Eastern Alps KW - high-pressure and Barrovian-type metamorphism KW - orogen-parallel extension KW - peak-temperature pattern KW - Raman microspectroscopy Y1 - 2013 U6 - https://doi.org/10.1111/jmg.12048 SN - 0263-4929 VL - 31 IS - 8 SP - 863 EP - 880 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Hewawasam, Tilak A1 - von Blanckenburg, Friedhelm A1 - Bouchez, Julien A1 - Dixon, Jean L. A1 - Schüssler, Jan A. A1 - Mäkeler, Ricarda T1 - Slow advance of the weathering front during deep, supply-limited saprolite formation in the tropical Highlands of Sri Lanka JF - Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society N2 - Silicate weathering - initiated by major mineralogical transformations at the base of ten meters of clay-rich saprolite generates the exceptionally low weathering flux found in streams draining the crystalline rocks of the mountainous and humid tropical Highlands of Sri Lanka. This conclusion is reached from a thorough investigation of the mineralogical, chemical, and Sr isotope compositions of samples within a regolith profile extending >10 m from surface soil through the weathering front in charnockite bedrock (a high-grade metamorphic rock), corestones formed at the weathering front, as well as from the chemical composition of the dissolved loads in nearby streams. Weatherable minerals and soluble elements are fully depleted at the top of the profile, showing that the system is supply-limited, such that weathering fluxes are controlled directly by the supply of fresh minerals. We determine the weathering rates using two independent means: (1) in situ-produced cosmogenic nuclides in surface soil and creek sediments in the close vicinity of the regolith combined with immobile element mass balance across the regolith and (2) river dissolved loads. Silicate weathering rates determined from both approaches range from 16 to 36 t km(-2) y(-1), corresponding to a weathering front advance rate of 6-14 mm ky(-1). These rates agree across the 10(1) to 10(4) - y time scales over which our rate metrics integrate, suggesting that the weathering system operates at steady state. Within error these rates are furthermore compatible with those obtained by modeling the advance rate of the weathering front from chemical gradients and mineral dissolution rates. The silicate weathering flux out of the weathering profile, measured on small creeks, amounts to 84% of the profile's export flux; the remaining 16% is contributed by non-silicate, atmospheric-derived input. The silicate weathering flux, as measured by dissolved loads in large catchments, amounts to ca. 50% of the total dissolved flux; the remainder being contributed by dust, rain, and weathering of local marble bands. Spheroidal weathering is the key processes of converting the fresh bedrock into saprolite at the weathering front. The mineralogical composition of weathering rinds shows that the sequence of mineral decomposition is: pyroxene; plagioclase; biotite; K-feldspar. Observable biotite alteration does not appear to initiate spheroidal weathering within corestones; therefore, we infer that other processes than biotite oxidation, like pyroxene oxidation, clay formation from pyroxene and plagioclase decomposition, the development of secondary porosity by plagioclase dissolution, or even microbiologic processes at depth enable the coupling between slow advance of the weathering front and slow erosion at the surface. The comparison to tectonically more active tropical landscapes lets us conclude that the combination of hard rock with tightly interlocked mineral grains and slow erosion in the absence of tectonically-induced landscape rejuvenation lead to these exceptionally low weathering rates. (C) 2013 Elsevier Ltd. All rights reserved. Y1 - 2013 U6 - https://doi.org/10.1016/j.gca.2013.05.006 SN - 0016-7037 VL - 118 IS - 10 SP - 202 EP - 230 PB - Elsevier CY - Oxford ER -