TY - JOUR A1 - Katzenberger, Anja A1 - Levermann, Anders A1 - Schewe, Jacob A1 - Pongratz, Julia T1 - Intensification of very wet monsoon seasons in India under global warming JF - Geophysical research letters N2 - Rainfall-intense summer monsoon seasons on the Indian subcontinent that are exceeding long-term averages cause widespread floods and landslides. Here we show that the latest generation of coupled climate models robustly project an intensification of very rainfall-intense seasons (June-September). Under the shared socioeconomic pathway SSP5-8.5, very wet monsoon seasons as observed in only 5 years in the period 1965-2015 are projected to occur 8 times more often in 2050-2100 in the multi-model average. Under SSP2-4.5, these seasons become only a factor of 6 times more frequent, showing that even modest efforts to mitigate climate change can have a strong impact on the frequency of very strong rainfall seasons. Besides, we find that the increasing risk of extreme seasonal rainfall is accompanied by a shift from days with light rainfall to days with moderate or heavy rainfall. Additionally, the number of wet days is projected to increase. KW - Indian monsoon KW - climate modeling KW - extreme seasons KW - climate change KW - CMIP6 KW - India Y1 - 2022 U6 - https://doi.org/10.1029/2022GL098856 SN - 0094-8276 SN - 1944-8007 VL - 49 IS - 15 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Kellermann, Patric A1 - Bubeck, Philip A1 - Kundela, Guenther A1 - Dosio, Alessandro A1 - Thieken, Annegret T1 - Frequency Analysis of Critical Meteorological Conditions in a Changing ClimateAssessing Future Implications for Railway Transportation in Austria JF - Climate : open access journal N2 - Meteorological extreme events have great potential for damaging railway infrastructure and posing risks to the safety of train passengers. In the future, climate change will presumably have serious implications on meteorological hazards in the Alpine region. Hence, attaining insights on future frequencies of meteorological extremes with relevance for the railway operation in Austria is required in the context of a comprehensive and sustainable natural hazard management plan of the railway operator. In this study, possible impacts of climate change on the frequencies of so-called critical meteorological conditions (CMCs) between the periods 1961-1990 and 2011-2040 are analyzed. Thresholds for such CMCs have been defined by the railway operator and used in its weather monitoring and early warning system. First, the seasonal climate change signals for air temperature and precipitation in Austria are described on the basis of an ensemble of high-resolution Regional Climate Model (RCM) simulations for Europe. Subsequently, the RCM-ensemble was used to investigate changes in the frequency of CMCs. Finally, the sensitivity of results is analyzed with varying threshold values for the CMCs. Results give robust indications for an all-season air temperature rise, but show no clear tendency in average precipitation. The frequency analyses reveal an increase in intense rainfall events and heat waves, whereas heavy snowfall and cold days are likely to decrease. Furthermore, results indicate that frequencies of CMCs are rather sensitive to changes of thresholds. It thus emphasizes the importance to carefully define, validate, andif neededto adapt the thresholds that are used in the weather monitoring and warning system of the railway operator. For this, continuous and standardized documentation of damaging events and near-misses is a pre-requisite. KW - climate change KW - critical meteorological condition KW - frequency analysis KW - natural hazard management KW - railway transportation Y1 - 2016 U6 - https://doi.org/10.3390/cli4020025 SN - 2225-1154 VL - 4 SP - 914 EP - 931 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kong, Xiangzhen A1 - Ghaffar, Salman A1 - Determann, Maria A1 - Friese, Kurt A1 - Jomaa, Seifeddine A1 - Mi, Chenxi A1 - Shatwell, Tom A1 - Rinke, Karsten A1 - Rode, Michael T1 - Reservoir water quality deterioration due to deforestation emphasizes the indirect effects of global change JF - Water research : a journal of the International Association on Water Quality (IAWQ) N2 - Deforestation is currently a widespread phenomenon and a growing environmental concern in the era of rapid climate change. In temperate regions, it is challenging to quantify the impacts of deforestation on the catchment dynamics and downstream aquatic ecosystems such as reservoirs and disentangle these from direct climate change impacts, let alone project future changes to inform management. Here, we tackled this issue by investigating a unique catchment-reservoir system with two reservoirs in distinct trophic states (meso- and eutrophic), both of which drain into the largest drinking water reservoir in Germany. Due to the prolonged droughts in 2015-2018, the catchment of the mesotrophic reservoir lost an unprecedented area of forest (exponential increase since 2015 and ca. 17.1% loss in 2020 alone). We coupled catchment nutrient exports (HYPE) and reservoir ecosystem dynamics (GOTM-WET) models using a process-based modeling approach. The coupled model was validated with datasets spanning periods of rapid deforestation, which makes our future projections highly robust. Results show that in a short-term time scale (by 2035), increasing nutrient flux from the catchment due to vast deforestation (80% loss) can turn the mesotrophic reservoir into a eutrophic state as its counterpart. Our results emphasize the more prominent impacts of deforestation than the direct impact of climate warming in impairment of water quality and ecological services to downstream aquatic ecosystems. Therefore, we propose to evaluate the impact of climate change on temperate reservoirs by incorporating a time scale-dependent context, highlighting the indirect impact of deforestation in the short-term scale. In the long-term scale (e.g. to 2100), a guiding hypothesis for future research may be that indirect effects (e.g., as mediated by catchment dynamics) are as important as the direct effects of climate warming on aquatic ecosystems. KW - deforestation KW - climate change KW - temperate regions KW - reservoir KW - eutrophication KW - process-based modeling Y1 - 2022 U6 - https://doi.org/10.1016/j.watres.2022.118721 SN - 0043-1354 SN - 1879-2448 VL - 221 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Korup, Oliver A1 - Görüm, Tolga A1 - Hayakawa, Yuichi T1 - Without power? - Landslide inventories in the face of climate change JF - Earth surface processes and landforms : the journal of the British Geomorphological Research Group N2 - Projected scenarios of climate change involve general predictions about the likely changes to the magnitude and frequency of landslides, particularly as a consequence of altered precipitation and temperature regimes. Whether such landslide response to contemporary or past climate change may be captured in differing scaling statistics of landslide size distributions and the erosion rates derived thereof remains debated. We test this notion with simple Monte Carlo and bootstrap simulations of statistical models commonly used to characterize empirical landslide size distributions. Our results show that significant changes to total volumes contained in such inventories may be masked by statistically indistinguishable scaling parameters, critically depending on, among others, the size of the largest of landslides recorded. Conversely, comparable model parameter values may obscure significant, i.e. more than twofold, changes to landslide occurrence, and thus inferred rates of hillslope denudation and sediment delivery to drainage networks. A time series of some of Earth's largest mass movements reveals clustering near and partly before the last glacial-interglacial transition and a distinct step-over from white noise to temporal clustering around this period. However, elucidating whether this is a distinct signal of first-order climate-change impact on slope stability or simply coincides with a transition from short-term statistical noise to long-term steady-state conditions remains an important research challenge. KW - landslide KW - climate change KW - magnitude & frequency Y1 - 2012 U6 - https://doi.org/10.1002/esp.2248 SN - 0197-9337 VL - 37 IS - 1 SP - 92 EP - 99 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Krol, Maarten A1 - Jaeger, Annekathrin A1 - Bronstert, Axel A1 - Güntner, Andreas T1 - Integrated modelling of climate, water, soil, agricultural and socio-economic processes: A general introduction of the methodology and some exemplary results from the semi-arid north-east of Brazil JF - Journal of hydrology N2 - Many semi-arid regions are characterised by water scarcity and vulnerability of natural resources, pronounced climatic variability and social stress. Integrated studies including climatotogy, hydrology, and socio-econornic studies are required both for analysing the dynamic natural conditions and to assess possible strategies to make semi-arid regions Less vulnerable to the present and changing climate. The model introduced here dynamically describes the retationships between climate forcing, water availability, agriculture and selected societal processes. The model has been tailored to simulate the rather complex situation in the semi-and north-eastern Brazil in a quantitative manner including the sensitivity to external forcing, such as climate change. The selected results presented show the general functioning of the integrated model, with a primary focus on climate change impacts. It becomes evident that due to Large differences in regional climate scenarios, it is still impossible to give quantitative values for the most probable development, e.g., to assign probabilities to the simulated results. However, it becomes clear that water is a very crucial factor, and that an efficient and ecologically sound water management is a key question for the further development of that semi-arid region. The simulation results show that, independent of the differences in climate change scenarios, rain-fed farming is more vulnerable to drought impacts compared to irrigated farming. However, the capacity of irrigation and other water infrastructure systems to enhance resilience in respect to climatic fluctuations is significantly constrained given a significant negative precipitation trend. (c) 2005 Elsevier B.V. All rights reserved. KW - integrated modelling KW - integrated river basin management KW - water resources management KW - semi-arid hydrology KW - climate change Y1 - 2006 U6 - https://doi.org/10.1016/j.jhydrol.2005.12.021 SN - 0022-1694 VL - 328 IS - 3-4 SP - 417 EP - 431 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kuhla, Kilian A1 - Willner, Sven N. A1 - Otto, Christian A1 - Geiger, Tobias A1 - Levermann, Anders T1 - Ripple resonance amplifies economic welfare loss from weather extremes JF - Environmental research letters : ERL / Institute of Physics N2 - The most complex but potentially most severe impacts of climate change are caused by extreme weather events. In a globally connected economy, damages can cause remote perturbations and cascading consequences-a ripple effect along supply chains. Here we show an economic ripple resonance that amplifies losses when consecutive or overlapping weather extremes and their repercussions interact. This amounts to an average amplification of 21% for climate-induced heat stress, river floods, and tropical cyclones. Modeling the temporal evolution of 1.8 million trade relations between >7000 regional economic sectors, we find that the regional responses to future extremes are strongly heterogeneous also in their resonance behavior. The induced effect on welfare varies between gains due to increased demand in some regions and losses due to demand or supply shortages in others. Within the current global supply network, the ripple resonance effect of extreme weather is strongest in high-income economies-an important effect to consider when evaluating past and future economic climate impacts. KW - consecutive disasters KW - economic ripple resonance KW - repercussion resonance KW - weather extremes KW - supply network KW - climate impacts KW - climate change Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/ac2932 SN - 1748-9326 VL - 16 IS - 11 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Lecourieux, Fatma A1 - Kappel, Christian A1 - Pieri, Philippe A1 - Charon, Justine A1 - Pillet, Jeremy A1 - Hilbert, Ghislaine A1 - Renaud, Christel A1 - Gomes, Eric A1 - Delrot, Serge A1 - Lecourieux, David T1 - Dissecting the Biochemical and Transcriptomic Effects of a Locally Applied Heat Treatment on Developing Cabernet Sauvignon Grape Berries JF - Frontiers in plant science N2 - Reproductive development of grapevine and berry composition are both strongly influenced by temperature. To date, the molecular mechanisms involved in grapevine berries response to high temperatures are poorly understood. Unlike recent data that addressed the effects on berry development of elevated temperatures applied at the whole plant level, the present work particularly focuses on the fruit responses triggered by direct exposure to heat treatment (HT). In the context of climate change, this work focusing on temperature effect at the microclimate level is of particular interest as it can help to better understand the consequences of leaf removal (a common viticultural practice) on berry development. HT (+8 degrees C) was locally applied to clusters from Cabernet Sauvignon fruiting cuttings at three different developmental stages (middle green, veraison and middle ripening). Samples were collected 1, 7, and 14 days after treatment and used for metabolic and transcriptomic analyses. The results showed dramatic and specific biochemical and transcriptomic changes in heat exposed berries, depending on the developmental stage and the stress duration. When applied at the herbaceous stage, HT delayed the onset of veraison. Heating also strongly altered the berry concentration of amino acids and organic acids (e.g., phenylalanine, raminobutyric acid and malate) and decreased the anthocyanin content at maturity. These physiological alterations could be partly explained by the deep remodeling of transcriptome in heated berries. More than 7000 genes were deregulated in at least one of the nine experimental conditions. The most affected processes belong to the categories "stress responses," protein metabolism" and "secondary metabolism," highlighting the intrinsic capacity of grape berries to perceive HT and to build adaptive responses. Additionally, important changes in processes related to "transport," "hormone" and "cell wall" might contribute to the postponing of veraison. Finally, opposite effects depending on heating duration were observed for genes encoding enzymes of the general phenylpropanoid pathway, suggesting that the HI induced decrease in anthocyanin content may result from a combination of transcript abundance and product degradation. KW - grapevine KW - berry development KW - microclimate KW - high temperature KW - microarrays KW - metabolomics/metabolite profiling KW - climate change Y1 - 2017 U6 - https://doi.org/10.3389/fpls.2017.00053 SN - 1664-462X VL - 8 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Lehmann, Jascha A1 - Coumou, Dim A1 - Frieler, Katja A1 - Eliseev, Alexey V. A1 - Levermann, Anders T1 - Future changes in extratropical storm tracks and baroclinicity under climate change JF - Environmental research letters N2 - The weather in Eurasia, Australia, and North and South America is largely controlled by the strength and position of extratropical storm tracks. Future climate change will likely affect these storm tracks and the associated transport of energy, momentum, and water vapour. Many recent studies have analyzed how storm tracks will change under climate change, and how these changes are related to atmospheric dynamics. However, there are still discrepancies between different studies on how storm tracks will change under future climate scenarios. Here, we show that under global warming the CMIP5 ensemble of coupled climate models projects only little relative changes in vertically averaged mid-latitude mean storm track activity during the northern winter, but agree in projecting a substantial decrease during summer. Seasonal changes in the Southern Hemisphere show the opposite behaviour, with an intensification in winter and no change during summer. These distinct seasonal changes in northern summer and southern winter storm tracks lead to an amplified seasonal cycle in a future climate. Similar changes are seen in the mid-latitude mean Eady growth rate maximum, a measure that combines changes in vertical shear and static stability based on baroclinic instability theory. Regression analysis between changes in the storm tracks and changes in the maximum Eady growth rate reveal that most models agree in a positive association between the two quantities over mid-latitude regions. KW - storm tracks KW - baroclinicity KW - climate change Y1 - 2014 U6 - https://doi.org/10.1088/1748-9326/9/8/084002 SN - 1748-9326 VL - 9 IS - 8 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Leins, Johannes A. A1 - Grimm, Volker A1 - Drechsler, Martin T1 - Large-scale PVA modeling of insects in cultivated grasslands BT - the role of dispersal in mitigating the effects of management schedules under climate change JF - Ecology and evolution N2 - In many species, dispersal is decisive for survival in a changing climate. Simulation models for population dynamics under climate change thus need to account for this factor. Moreover, large numbers of species inhabiting agricultural landscapes are subject to disturbances induced by human land use. We included dispersal in the HiLEG model that we previously developed to study the interaction between climate change and agricultural land use in single populations. Here, the model was parameterized for the large marsh grasshopper (LMG) in cultivated grasslands of North Germany to analyze (1) the species development and dispersal success depending on the severity of climate change in subregions, (2) the additional effect of grassland cover on dispersal success, and (3) the role of dispersal in compensating for detrimental grassland mowing. Our model simulated population dynamics in 60-year periods (2020-2079) on a fine temporal (daily) and high spatial (250 x 250 m(2)) scale in 107 subregions, altogether encompassing a range of different grassland cover, climate change projections, and mowing schedules. We show that climate change alone would allow the LMG to thrive and expand, while grassland cover played a minor role. Some mowing schedules that were harmful to the LMG nevertheless allowed the species to moderately expand its range. Especially under minor climate change, in many subregions dispersal allowed for mowing early in the year, which is economically beneficial for farmers. More severe climate change could facilitate LMG expansion to uninhabited regions but would require suitable mowing schedules along the path. These insights can be transferred to other species, given that the LMG is considered a representative of grassland communities. For more specific predictions on the dynamics of other species affected by climate change and land use, the publicly available HiLEG model can be easily adapted to the characteristics of their life cycle. KW - bilinear interpolation KW - climate change KW - dispersal success KW - land use KW - large marsh grasshopper KW - spatially explicit model Y1 - 2022 U6 - https://doi.org/10.1002/ece3.9063 SN - 2045-7758 VL - 12 IS - 7 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Levermann, Anders A1 - Clark, Peter U. A1 - Marzeion, Ben A1 - Milne, Glenn A. A1 - Pollard, David A1 - Radic, Valentina A1 - Robinson, Alexander T1 - The multimillennial sea-level commitment of global warming JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m degrees C-1 and 1.2 m degrees C-1 of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m degrees C-1 within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales. KW - climate change KW - climate impacts KW - sea-level change Y1 - 2013 U6 - https://doi.org/10.1073/pnas.1219414110 SN - 0027-8424 VL - 110 IS - 34 SP - 13745 EP - 13750 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Li, Zhen A1 - Spangenberg, Erik A1 - Schicks, Judith Maria A1 - Kempka, Thomas T1 - Numerical Simulation of Coastal Sub-Permafrost Gas Hydrate Formation in the Mackenzie Delta, Canadian Arctic JF - Energies N2 - The Mackenzie Delta (MD) is a permafrost-bearing region along the coasts of the Canadian Arctic which exhibits high sub-permafrost gas hydrate (GH) reserves. The GH occurring at the Mallik site in the MD is dominated by thermogenic methane (CH4), which migrated from deep conventional hydrocarbon reservoirs, very likely through the present fault systems. Therefore, it is assumed that fluid flow transports dissolved CH4 upward and out of the deeper overpressurized reservoirs via the existing polygonal fault system and then forms the GH accumulations in the Kugmallit-Mackenzie Bay Sequences. We investigate the feasibility of this mechanism with a thermo-hydraulic-chemical numerical model, representing a cross section of the Mallik site. We present the first simulations that consider permafrost formation and thawing, as well as the formation of GH accumulations sourced from the upward migrating CH4-rich formation fluid. The simulation results show that temperature distribution, as well as the thickness and base of the ice-bearing permafrost are consistent with corresponding field observations. The primary driver for the spatial GH distribution is the permeability of the host sediments. Thus, the hypothesis on GH formation by dissolved CH4 originating from deeper geological reservoirs is successfully validated. Furthermore, our results demonstrate that the permafrost has been substantially heated to 0.8-1.3 degrees C, triggered by the global temperature increase of about 0.44 degrees C and further enhanced by the Arctic Amplification effect at the Mallik site from the early 1970s to the mid-2000s. KW - gas hydrate KW - permafrost KW - methane KW - faults KW - climate change KW - Mallik KW - numerical simulations Y1 - 2022 U6 - https://doi.org/10.3390/en15144986 SN - 1996-1073 VL - 15 IS - 14 PB - MDPI CY - Basel ER - TY - JOUR A1 - Lischke, Betty A1 - Hilt, Sabine A1 - Janse, Jan H. A1 - Kuiper, Jan J. A1 - Mehner, Thomas A1 - Mooij, Wolf M. A1 - Gaedke, Ursula T1 - Enhanced input of terrestrial particulate organic matter reduces the resilience of the clear-water state of shallow lakes: A model study JF - Ecosystems N2 - The amount of terrestrial particulate organic matter (t-POM) entering lakes is predicted to increase as a result of climate change. This may especially alter the structure and functioning of ecosystems in small, shallow lakes which can rapidly shift from a clear-water, macrophyte-dominated into a turbid, phytoplankton-dominated state. We used the integrative ecosystem model PCLake to predict how rising t-POM inputs affect the resilience of the clear-water state. PCLake links a pelagic and benthic food chain with abiotic components by a number of direct and indirect effects. We focused on three pathways (zoobenthos, zooplankton, light availability) by which elevated t-POM inputs (with and without additional nutrients) may modify the critical nutrient loading thresholds at which a clear-water lake becomes turbid and vice versa. Our model results show that (1) increased zoobenthos biomass due to the enhanced food availability results in more benthivorous fish which reduce light availability due to bioturbation, (2) zooplankton biomass does not change, but suspended t-POM reduces the consumption of autochthonous particulate organic matter which increases the turbidity, and (3) the suspended t-POM reduces the light availability for submerged macrophytes. Therefore, light availability is the key process that is indirectly or directly changed by t-POM input. This strikingly resembles the deteriorating effect of terrestrial dissolved organic matter on the light climate of lakes. In all scenarios, the resilience of the clear-water state is reduced thus making the turbid state more likely at a given nutrient loading. Therefore, our study suggests that rising t-POM input can add to the effects of climate warming making reductions in nutrient loadings even more urgent. KW - climate change KW - PCLake KW - bistability KW - alternative stable states KW - critical nutrient loading KW - ecosystem modeling KW - allochthony KW - t-POM Y1 - 2014 U6 - https://doi.org/10.1007/s10021-014-9747-7 SN - 1432-9840 SN - 1435-0629 VL - 17 IS - 4 SP - 616 EP - 626 PB - Springer CY - New York ER - TY - JOUR A1 - Loeffler, Jörg A1 - Anschlag, Kerstin A1 - Baker, Barry A1 - Finch, Oliver-D. A1 - Diekkrueger, Bernd A1 - Wundram, Dirk A1 - Schroeder, Boris A1 - Pape, Roland A1 - Lundberg, Anders T1 - Mountain ecosystem response to global change JF - Erdkunde : archive for scientific geography N2 - Mountain ecosystems are commonly regarded as being highly sensitive to global change. Due to the system complexity and multifaceted interacting drivers, however, understanding current responses and predicting future changes in these ecosystems is extremely difficult. We aim to discuss potential effects of global change on mountain ecosystems and give examples of the underlying response mechanisms as they are understood at present. Based on the development of scientific global change research in mountains and its recent structures, we identify future research needs, highlighting the major lack and the importance of integrated studies that implement multi-factor, multi-method, multi-scale, and interdisciplinary research. KW - High mountain ecology KW - arctic-alpine environments KW - climate change KW - land use and land cover change KW - tree line alteration KW - range shifts KW - altitudinal zonation Y1 - 2011 U6 - https://doi.org/10.3112/erdkunde.2011.02.06 SN - 0014-0015 VL - 65 IS - 2 SP - 189 EP - 213 PB - Geographisches Inst., Univ. Bonn CY - Goch ER - TY - JOUR A1 - Maes, Sybryn L. A1 - Perring, Michael P. A1 - Vanhellemont, Margot A1 - Depauw, Leen A1 - Van den Bulcke, Jan A1 - Brumelis, Guntis A1 - Brunet, Jorg A1 - Decocq, Guillaume A1 - den Ouden, Jan A1 - Härdtle, Werner A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Heinrichs, Steffi A1 - Jaroszewicz, Bogdan A1 - Kopecký, Martin A1 - Malis, Frantisek A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Environmental drivers interactively affect individual tree growth across temperate European forests JF - Global change biology N2 - Forecasting the growth of tree species to future environmental changes requires abetter understanding of its determinants. Tree growth is known to respond to global‐change drivers such as climate change or atmospheric deposition, as well as to localland‐use drivers such as forest management. Yet, large geographical scale studiesexamining interactive growth responses to multiple global‐change drivers are relativelyscarce and rarely consider management effects. Here, we assessed the interactiveeffects of three global‐change drivers (temperature, precipitation and nitrogen deposi-tion) on individual tree growth of three study species (Quercus robur/petraea, Fagus syl-vatica and Fraxinus excelsior). We sampled trees along spatial environmental gradientsacross Europe and accounted for the effects of management for Quercus. We collectedincrement cores from 267 trees distributed over 151 plots in 19 forest regions andcharacterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. Wedemonstrate that growth responds interactively to global‐change drivers, with species ‐specific sensitivities to the combined factors. Simultaneously high levels of precipita-tion and deposition benefited Fraxinus, but negatively affected Quercus’ growth, high-lighting species‐specific interactive tree growth responses to combined drivers. ForFagus, a stronger growth response to higher temperatures was found when precipita-tion was also higher, illustrating the potential negative effects of drought stress underwarming for this species. Furthermore, we show that past forest management canmodulate the effects of changing temperatures on Quercus’ growth; individuals in plotswith a coppicing history showed stronger growth responses to higher temperatures.Overall, our findings highlight how tree growth can be interactively determined by glo-bal‐change drivers, and how these growth responses might be modulated by past for-est management. By showing future growth changes for scenarios of environmentalchange, we stress the importance of considering multiple drivers, including past man-agement and their interactions, when predicting tree growth. KW - basal area increment KW - climate change KW - Fagus KW - Fraxinus KW - historical ecology KW - nitrogen deposition KW - Quercus KW - tree-ring analysis Y1 - 2018 U6 - https://doi.org/10.1111/gcb.14493 SN - 1354-1013 SN - 1365-2486 VL - 25 IS - 1 SP - 201 EP - 217 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Markovic, Danijela A1 - Carrizo, Savrina F. A1 - Kaercher, Oskar A1 - Walz, Ariane A1 - David, Jonathan N. W. T1 - Vulnerability of European freshwater catchments to climate change JF - Global change biology N2 - Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers <25% of the most vulnerable catchments. Practical steps need to be taken to ensure the persistence of freshwater biodiversity under climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for development of climate change conservation management and mitigation strategies. KW - catchment connectivity KW - climate change KW - exposure KW - freshwater biodiversity KW - gap analysis KW - resilience KW - sensitivity KW - vulnerability Y1 - 2017 U6 - https://doi.org/10.1111/gcb.13657 SN - 1354-1013 SN - 1365-2486 VL - 23 SP - 3567 EP - 3580 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Marzetz, Vanessa A1 - Spijkerman, Elly A1 - Striebel, Maren A1 - Wacker, Alexander T1 - Phytoplankton community responses to interactions between light intensity, light variations, and phosphorus supply JF - Frontiers in Environmental Science N2 - In a changing world, phytoplankton communities face a large variety of challenges including altered light regimes. These alterations are caused by more pronounced stratification due to rising temperatures, enhanced eutrophication, and browning of lakes. Community responses toward these effects can emerge as alterations in physiology, biomass, biochemical composition, or diversity. In this study, we addressed the combined effects of changes in light and nutrient conditions on community responses. In particular, we investigated how light intensity and variability under two nutrient conditions influence (1) fast responses such as adjustments in photosynthesis, (2) intermediate responses such as pigment adaptation and (3) slow responses such as changes in community biomass and species composition. Therefore, we exposed communities consisting of five phytoplankton species belonging to different taxonomic groups to two constant and two variable light intensity treatments combined with two levels of phosphorus supply. The tested phytoplankton communities exhibited increased fast reactions of photosynthetic processes to light variability and light intensity. The adjustment of their light harvesting mechanisms via community pigment composition was not affected by light intensity, variability, or nutrient supply. However, pigment specific effects of light intensity, light variability, and nutrient supply on the proportion of the respective pigments were detected. Biomass was positively affected by higher light intensity and nutrient concentrations while the direction of the effect of variability was modulated by light intensity. Light variability had a negative impact on biomass at low, but a positive impact at high light intensity. The effects on community composition were species specific. Generally, the proportion of green algae was higher under high light intensity, whereas the cyanobacterium performed better under low light conditions. In addition to that, the diatom and the cryptophyte performed better with high nutrient supply while the green algae as well as the cyanobacterium performed better at low nutrient conditions. This shows that light intensity, light variability, and nutrient supply interactively affect communities. Furthermore, the responses are highly species and pigment specific, thus to clarify the effects of climate change a deeper understanding of the effects of light variability and species interactions within communities is important. KW - phytoplankton communities KW - light variability KW - photosynthetic rate KW - climate change KW - resource competition KW - light intensity (irradiance) KW - pigment composition KW - nutrient supply Y1 - 2020 U6 - https://doi.org/10.3389/fenvs.2020.539733 SN - 2296-665X VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Marzetz, Vanessa A1 - Spijkerman, Elly A1 - Striebel, Maren A1 - Wacker, Alexander T1 - Phytoplankton Community Responses to Interactions Between Light Intensity, Light Variations, and Phosphorus Supply JF - Frontiers in Environmental Science N2 - In a changing world, phytoplankton communities face a large variety of challenges including altered light regimes. These alterations are caused by more pronounced stratification due to rising temperatures, enhanced eutrophication, and browning of lakes. Community responses toward these effects can emerge as alterations in physiology, biomass, biochemical composition, or diversity. In this study, we addressed the combined effects of changes in light and nutrient conditions on community responses. In particular, we investigated how light intensity and variability under two nutrient conditions influence (1) fast responses such as adjustments in photosynthesis, (2) intermediate responses such as pigment adaptation and (3) slow responses such as changes in community biomass and species composition. Therefore, we exposed communities consisting of five phytoplankton species belonging to different taxonomic groups to two constant and two variable light intensity treatments combined with two levels of phosphorus supply. The tested phytoplankton communities exhibited increased fast reactions of photosynthetic processes to light variability and light intensity. The adjustment of their light harvesting mechanisms via community pigment composition was not affected by light intensity, variability, or nutrient supply. However, pigment specific effects of light intensity, light variability, and nutrient supply on the proportion of the respective pigments were detected. Biomass was positively affected by higher light intensity and nutrient concentrations while the direction of the effect of variability was modulated by light intensity. Light variability had a negative impact on biomass at low, but a positive impact at high light intensity. The effects on community composition were species specific. Generally, the proportion of green algae was higher under high light intensity, whereas the cyanobacterium performed better under low light conditions. In addition to that, the diatom and the cryptophyte performed better with high nutrient supply while the green algae as well as the cyanobacterium performed better at low nutrient conditions. This shows that light intensity, light variability, and nutrient supply interactively affect communities. Furthermore, the responses are highly species and pigment specific, thus to clarify the effects of climate change a deeper understanding of the effects of light variability and species interactions within communities is important. KW - phytoplankton communities KW - light variability KW - photosynthetic rate KW - climate change KW - resource competition KW - light intensity (irradiance) KW - pigment composition KW - nutrient supply Y1 - 2020 U6 - https://doi.org/10.3389/fenvs.2020.539733 SN - 2296-665X VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - McCool, Weston C. A1 - Codding, Brian F. A1 - Vernon, Kenneth B. A1 - Wilson, Kurt M. A1 - Yaworsky, Peter M. A1 - Marwan, Norbert A1 - Kennett, Douglas J. T1 - Climate change-induced population pressure drives high rates of lethal violence in the Prehispanic central Andes JF - Proceedings of the National Academy of Sciences of the United States of America : PNAS N2 - Understanding the influence of climate change and population pressure on human conflict remains a critically important topic in the social sciences. Long-term records that evaluate these dynamics across multiple centuries and outside the range of modern climatic variation are especially capable of elucidating the relative effect of-and the interaction between-climate and demography. This is crucial given that climate change may structure population growth and carrying capacity, while both climate and population influence per capita resource availability. This study couples paleoclimatic and demographic data with osteological evaluations of lethal trauma from 149 directly accelerator mass spectrometry C-14-dated individuals from the Nasca highland region of Peru. Multiple local and supraregional precipitation proxies are combined with a summed probability distribution of 149 C-14 dates to estimate population dynamics during a 700-y study window. Counter to previous findings, our analysis reveals a precipitous increase in violent deaths associated with a period of productive and stable climate, but volatile population dynamics. We conclude that favorable local climate conditions fostered population growth that put pressure on the marginal and highly circumscribed resource base, resulting in violent resource competition that manifested in over 450 y of internecine warfare. These findings help support a general theory of intergroup violence, indicating that relative resource scarcity-whether driven by reduced resource abundance or increased competition-can lead to violence in subsistence societies when the outcome is lower per capita resource availability. KW - climate change KW - population pressure KW - warfare KW - lethal violence KW - Andes Y1 - 2022 U6 - https://doi.org/10.1073/pnas.2117556119 SN - 0027-8424 SN - 1091-6490 VL - 119 IS - 17 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Meißl, Gertraud A1 - Formayer, Herbert A1 - Klebinder, Klaus A1 - Kerl, Florian A1 - Schöberl, Friedrich A1 - Geitner, Clemens A1 - Markart, Gerhard A1 - Leidinger, David A1 - Bronstert, Axel T1 - Climate change effects on hydrological system conditions influencing generation of storm runoff in small Alpine catchments JF - Hydrological processes : an international journal N2 - Floods and debris flows in small Alpine torrent catchments (<10km(2)) arise from a combination of critical antecedent system state conditions and mostly convective precipitation events with high precipitation intensities. Thus, climate change may influence the magnitude-frequency relationship of extreme events twofold: by a modification of the occurrence probabilities of critical hydrological system conditions and by a change of event precipitation characteristics. Three small Alpine catchments in different altitudes in Western Austria (Ruggbach, Brixenbach and Langentalbach catchment) were investigated by both field experiments and process-based simulation. Rainfall-runoff model (HQsim) runs driven by localized climate scenarios (CNRM-RM4.5/ARPEGE, MPI-REMO/ECHAM5 and ICTP-RegCM3/ECHAM5) were used in order to estimate future frequencies of stormflow triggering system state conditions. According to the differing altitudes of the study catchments, two effects of climate change on the hydrological systems can be observed. On one hand, the seasonal system state conditions of medium altitude catchments are most strongly affected by air temperature-controlled processes such as the development of the winter snow cover as well as evapotranspiration. On the other hand, the unglaciated high-altitude catchment is less sensitive to climate change-induced shifts regarding days with critical antecedent soil moisture and desiccated litter layer due to its elevation-related small proportion of sensitive areas. For the period 2071-2100, the number of days with critical antecedent soil moisture content will be significantly reduced to about 60% or even less in summer in all catchments. In contrast, the number of days with dried-out litter layers causing hydrophobic effects will increase by up to 8%-11% of the days in the two lower altitude catchments. The intensity analyses of heavy precipitation events indicate a clear increase in rain intensities of up to 10%. KW - climate change KW - hydrophobic effects KW - small Alpine catchments KW - soil moisture KW - storm runoff events KW - system conditions Y1 - 2016 U6 - https://doi.org/10.1002/hyp.11104 SN - 0885-6087 SN - 1099-1085 VL - 31 IS - 6 SP - 1314 EP - 1330 PB - Wiley CY - New York ER - TY - JOUR A1 - Mielke, Jahel T1 - Signals for 2 degrees C BT - the influence of policies, market factors and civil society actions on investment decisions for green infrastructure JF - Journal of Sustainable Finance & Investment N2 - The targets of the Paris Agreement make it necessary to redirect finance flows towards sustainable, low-carbon infrastructures and technologies. Currently, the potential of institutional investors to help finance this transition is widely discussed. Thus, this paper takes a closer look at influence factors for green investment decisions of large European insurance companies. With a mix of qualitative and quantitative methods, the importance of policy, market and civil society signals is evaluated. In summary, respondents favor measures that promote green investment, such as feed-in tariffs or adjustments of capital charges for green assets, over ones that make carbon-intensive investments less attractive, such as the phase-out of fossil fuel subsidies or a carbon price. While investors currently see a low impact of the carbon price, they rank a substantial reform as an important signal for the future. Respondents also emphasize that policy signals have to be coherent and credible to coordinate expectations. KW - Green infrastructure investment KW - policy signals KW - green finance KW - climate change KW - institutional investors Y1 - 2019 U6 - https://doi.org/10.1080/20430795.2018.1528809 SN - 2043-0795 SN - 2043-0809 VL - 9 IS - 2 SP - 87 EP - 115 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Mogrovejo Arias, Diana Carolina A1 - Brill, Florian H. H. A1 - Wagner, Dirk T1 - Potentially pathogenic bacteria isolated from diverse habitats in Spitsbergen, Svalbard JF - Environmental earth sciences N2 - The Arctic ecosystem, a reservoir of genetic microbial diversity, represents a virtually unlimited source of microorganisms that could interact with human beings. Despite continuous exploration of Arctic habitats and description of their microbial communities, bacterial phenotypes commonly associated with pathogenicity, such as hemolytic activity, have rarely been reported. In this study, samples of snow, fresh and marine water, soil, and sediment from several habitats in the Arctic archipelago of Svalbard were collected during Summer, 2017. Bacterial isolates were obtained after incubation on oligotrophic media at different temperatures and their hemolytic potential was assessed on sheep blood agar plates. Partial (alpha) or true (beta) hemolysis was observed in 32 out of 78 bacterial species. Genes expressing cytolytic compounds, such as hemolysins, likely increase the general fitness of the producing microorganisms and confer a competitive advantage over the availability of nutrients in natural habitats. In environmental species, the nutrient-acquisition function of these compounds presumably precedes their function as toxins for mammalian erythrocytes. However, in the light of global warming, the presence of hemolytic bacteria in Arctic environments highlights the possible risks associated with these microorganisms in the event of habitat melting/destruction, ecosystem transition, and re-colonization. KW - Arctic KW - Svalbard KW - hemolysins KW - climate change KW - pathogens KW - virulence Y1 - 2020 U6 - https://doi.org/10.1007/s12665-020-8853-4 SN - 1866-6280 SN - 1866-6299 VL - 79 IS - 5 PB - Springer CY - Berlin ; Heidelberg ER - TY - JOUR A1 - Mtilatila, Lucy Mphatso Ng'ombe A1 - Bronstert, Axel A1 - Vormoor, Klaus Josef T1 - Temporal evaluation and projections of meteorological droughts in the Greater Lake Malawi Basin, Southeast Africa JF - Frontiers in water N2 - The study examined the potential future changes of drought characteristics in the Greater Lake Malawi Basin in Southeast Africa. This region strongly depends on water resources to generate electricity and food. Future projections (considering both moderate and high emission scenarios) of temperature and precipitation from an ensemble of 16 bias-corrected climate model combinations were blended with a scenario-neutral response surface approach to analyses changes in: (i) the meteorological conditions, (ii) the meteorological water balance, and (iii) selected drought characteristics such as drought intensity, drought months, and drought events, which were derived from the Standardized Precipitation and Evapotranspiration Index. Changes were analyzed for a near-term (2021-2050) and far-term period (2071-2100) with reference to 1976-2005. The effect of bias-correction (i.e., empirical quantile mapping) on the ability of the climate model ensemble to reproduce observed drought characteristics as compared to raw climate projections was also investigated. Results suggest that the bias-correction improves the climate models in terms of reproducing temperature and precipitation statistics but not drought characteristics. Still, despite the differences in the internal structures and uncertainties that exist among the climate models, they all agree on an increase of meteorological droughts in the future in terms of higher drought intensity and longer events. Drought intensity is projected to increase between +25 and +50% during 2021-2050 and between +131 and +388% during 2071-2100. This translates into +3 to +5, and +7 to +8 more drought months per year during both periods, respectively. With longer lasting drought events, the number of drought events decreases. Projected droughts based on the high emission scenario are 1.7 times more severe than droughts based on the moderate scenario. That means that droughts in this region will likely become more severe in the coming decades. Despite the inherent high uncertainties of climate projections, the results provide a basis in planning and (water-)managing activities for climate change adaptation measures in Malawi. This is of particular relevance for water management issues referring hydro power generation and food production, both for rain-fed and irrigated agriculture. KW - meteorological drought KW - drought intensity KW - climate change KW - drought KW - events KW - Lake Malawi KW - Shire River KW - drought projections KW - South-Eastern KW - Africa Y1 - 2022 U6 - https://doi.org/10.3389/frwa.2022.1041452 SN - 2624-9375 VL - 4 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Mtilatila, Lucy Mphatso Ng'ombe A1 - Bronstert, Axel A1 - Vormoor, Klaus Josef T1 - Temporal evaluation and projections of meteorological droughts in the Greater Lake Malawi Basin, Southeast Africa JF - Frontiers in Water N2 - The study examined the potential future changes of drought characteristics in the Greater Lake Malawi Basin in Southeast Africa. This region strongly depends on water resources to generate electricity and food. Future projections (considering both moderate and high emission scenarios) of temperature and precipitation from an ensemble of 16 bias-corrected climate model combinations were blended with a scenario-neutral response surface approach to analyses changes in: (i) the meteorological conditions, (ii) the meteorological water balance, and (iii) selected drought characteristics such as drought intensity, drought months, and drought events, which were derived from the Standardized Precipitation and Evapotranspiration Index. Changes were analyzed for a near-term (2021–2050) and far-term period (2071–2100) with reference to 1976–2005. The effect of bias-correction (i.e., empirical quantile mapping) on the ability of the climate model ensemble to reproduce observed drought characteristics as compared to raw climate projections was also investigated. Results suggest that the bias-correction improves the climate models in terms of reproducing temperature and precipitation statistics but not drought characteristics. Still, despite the differences in the internal structures and uncertainties that exist among the climate models, they all agree on an increase of meteorological droughts in the future in terms of higher drought intensity and longer events. Drought intensity is projected to increase between +25 and +50% during 2021–2050 and between +131 and +388% during 2071–2100. This translates into +3 to +5, and +7 to +8 more drought months per year during both periods, respectively. With longer lasting drought events, the number of drought events decreases. Projected droughts based on the high emission scenario are 1.7 times more severe than droughts based on the moderate scenario. That means that droughts in this region will likely become more severe in the coming decades. Despite the inherent high uncertainties of climate projections, the results provide a basis in planning and (water-)managing activities for climate change adaptation measures in Malawi. This is of particular relevance for water management issues referring hydro power generation and food production, both for rain-fed and irrigated agriculture. KW - meteorological drought KW - drought intensity KW - climate change KW - drought events KW - Lake Malawi KW - Shire River KW - drought projections KW - South-Eastern Africa Y1 - 2022 U6 - https://doi.org/10.3389/frwa.2022.1041452 SN - 2624-9375 SP - 1 EP - 16 PB - Frontiers Media S.A. CY - Lausanne, Schweiz ER - TY - JOUR A1 - Oguntunde, Philip G. A1 - Abiodun, Babatunde Joseph A1 - Lischeid, Gunnar A1 - Abatan, Abayomi A. T1 - Droughts projection over the Niger and Volta River basins of West Africa at specific global warming levels JF - International Journal of Climatology N2 - This study investigates possible impacts of four global warming levels (GWLs: GWL1.5, GWL2.0, GWL2.5, and GWL3.0) on drought characteristics over Niger River basin (NRB) and Volta River basin (VRB). Two drought indices-Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI)-were employed in characterizing droughts in 20 multi-model simulation outputs from the Coordinated Regional Climate Downscaling Experiment (CORDEX). The performance of the simulation in reproducing basic hydro-climatological features and severe drought characteristics (i.e., magnitude and frequency) in the basins were evaluated. The projected changes in the future drought frequency were quantified and compared under the four GWLs for two climate forcing scenarios (RCP8.5 and RCP4.5). The regional climate model (RCM) ensemble gives a realistic simulation of historical hydro-climatological variables needed to calculate the drought indices. With SPEI, the simulation ensemble projects an increase in the magnitude and frequency of severe droughts over both basins (NRB and VRB) at all GWLs, but the increase, which grows with the GWLs, is higher over NRB than over VRB. More than 75% of the simulations agree on the projected increase at GWL1.5 and all simulations agree on the increase at higher GWLs. With SPI, the projected changes in severe drought is weaker and the magnitude remains the same at all GWLs, suggesting that SPI projection may underestimate impacts of the GWLs on the intensity and severity of future drought. The results of this study have application in mitigating impact of global warming on future drought risk over the regional water systems. KW - climate change KW - drought index KW - global warming levels KW - river basins KW - West Africa KW - CORDEX data Y1 - 2019 VL - 40 IS - 13 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Palmer, Matthew D. A1 - Gregory, Jonathan A1 - Bagge, Meike A1 - Calvert, Daley A1 - Hagedoorn, Jan Marius A1 - Howard, Tom A1 - Klemann, Volker A1 - Lowe, Jason A. A1 - Roberts, Chris A1 - Slangen, Aimee B. A. A1 - Spada, Giorgio T1 - Exploring the drivers of global and local sea‐level change over the 21st century and beyond JF - Earth's future N2 - We present a new set of global and local sea‐level projections at example tide gauge locations under the RCP2.6, RCP4.5, and RCP8.5 emissions scenarios. Compared to the CMIP5‐based sea‐level projections presented in IPCC AR5, we introduce a number of methodological innovations, including (i) more comprehensive treatment of uncertainties, (ii) direct traceability between global and local projections, and (iii) exploratory extended projections to 2300 based on emulation of individual CMIP5 models. Combining the projections with observed tide gauge records, we explore the contribution to total variance that arises from sea‐level variability, different emissions scenarios, and model uncertainty. For the period out to 2300 we further breakdown the model uncertainty by sea‐level component and consider the dependence on geographic location, time horizon, and emissions scenario. Our analysis highlights the importance of local variability for sea‐level change in the coming decades and the potential value of annual‐to‐decadal predictions of local sea‐level change. Projections to 2300 show a substantial degree of committed sea‐level rise under all emissions scenarios considered and highlight the reduced future risk associated with RCP2.6 and RCP4.5 compared to RCP8.5. Tide gauge locations can show large ( > 50%) departures from the global average, in some cases even reversing the sign of the change. While uncertainty in projections of the future Antarctic ice dynamic response tends to dominate post‐2100, we see substantial differences in the breakdown of model variance as a function of location, time scale, and emissions scenario. KW - climate change KW - CMIP5 models KW - RCP scenarios KW - sea-level projections KW - tide gauge observations Y1 - 2020 U6 - https://doi.org/10.1029/2019EF001413 SN - 2328-4277 VL - 8 IS - 9 SP - 1 EP - 25 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Pan, Xiaohui A1 - Wang, Weishi A1 - Liu, Tie A1 - Huang, Yue A1 - De Maeyer, Philippe A1 - Guo, Chenyu A1 - Ling, Yunan A1 - Akmalov, Shamshodbek T1 - Quantitative detection and attribution of groundwater level variations in the Amu Darya Delta JF - Water N2 - In the past few decades, the shrinkage of the Aral Sea is one of the biggest ecological catastrophes caused by human activity. To quantify the joint impact of both human activities and climate change on groundwater, the spatiotemporal groundwater dynamic characteristics in the Amu Darya Delta of the Aral Sea from 1999 to 2017 were analyzed, using the groundwater level, climate conditions, remote sensing data, and irrigation information. Statistics analysis was adopted to analyze the trend of groundwater variation, including intensity, periodicity, spatial structure, while the Pearson correlation analysis and principal component analysis (PCA) were used to quantify the impact of climate change and human activities on the variabilities of the groundwater level. Results reveal that the local groundwater dynamic has varied considerably. From 1999 to 2002, the groundwater level dropped from -189 cm to -350 cm. Until 2017, the groundwater level rose back to -211 cm with fluctuation. Seasonally, the fluctuation period of groundwater level and irrigation water was similar, both were about 18 months. Spatially, the groundwater level kept stable within the irrigation area and bare land but fluctuated drastically around the irrigation area. The Pearson correlation analysis reveals that the dynamic of the groundwater level is closely related to irrigation activity within the irrigation area (Nukus: -0.583), while for the place adjacent to the Aral Sea, the groundwater level is closely related to the Large Aral Sea water level (Muynak: 0.355). The results of PCA showed that the cumulative contribution rate of the first three components exceeds 85%. The study reveals that human activities have a great impact on groundwater, effective management, and the development of water resources in arid areas is an essential prerequisite for ecological protection. KW - groundwater level variation KW - climate change KW - human activities KW - statistical analysis KW - Amu Darya Delta Y1 - 2020 U6 - https://doi.org/10.3390/w12102869 SN - 2073-4441 VL - 12 IS - 10 PB - MDPI CY - Basel ER - TY - JOUR A1 - Pearce, Warren A1 - Özkula, Suay M. A1 - Greene, Amanda K. A1 - Teeling, Lauren A1 - Bansard, Jennifer S. A1 - Omena, Janna Joceli A1 - Rabello, Elaine Teixeira T1 - Visual cross-platform analysis JF - Information, Communication and Society: digital methods to research social media images N2 - Analysis of social media using digital methods is a flourishing approach. However, the relatively easy availability of data collected via platform application programming interfaces has arguably led to the predominance of single-platform research of social media. Such research has also privileged the role of text in social media analysis, as a form of data that is more readily gathered and searchable than images. In this paper, we challenge both of these prevailing forms of social media research by outlining a methodology for visual cross-platform analysis (VCPA), defined as the study of still and moving images across two or more social media platforms. Our argument contains three steps. First, we argue that cross-platform analysis addresses a gap in research methods in that it acknowledges the interplay between a social phenomenon under investigation and the medium within which it is being researched, thus illuminating the different affordances and cultures of web platforms. Second, we build on the literature on multimodal communication and platform vernacular to provide a rationale for incorporating the visual into cross-platform analysis. Third, we reflect on an experimental cross-platform analysis of images within social media posts (n = 471,033) used to communicate climate change to advance different modes of macro- and meso-levels of analysis that are natively visual: image-text networks, image plots and composite images. We conclude by assessing the research pathways opened up by VCPA, delineating potential contributions to empirical research and theory and the potential impact on practitioners of social media communication. KW - research methodology KW - visual analysis KW - social media KW - climate change Y1 - 2018 U6 - https://doi.org/10.1080/1369118X.2018.1486871 SN - 1468-4462 SN - 1369-118X VL - 23 IS - 2 SP - 161 EP - 180 PB - Routledge CY - London ER - TY - JOUR A1 - Perring, Michael P. A1 - Bernhardt-Roemermann, Markus A1 - Baeten, Lander A1 - Midolo, Gabriele A1 - Blondeel, Haben A1 - Depauw, Leen A1 - Landuyt, Dries A1 - Maes, Sybryn L. A1 - De Lombaerde, Emiel A1 - Caron, Maria Mercedes A1 - Vellend, Mark A1 - Brunet, Joerg A1 - Chudomelova, Marketa A1 - Decocq, Guillaume A1 - Diekmann, Martin A1 - Dirnboeck, Thomas A1 - Doerfler, Inken A1 - Durak, Tomasz A1 - De Frenne, Pieter A1 - Gilliam, Frank S. A1 - Hedl, Radim A1 - Heinken, Thilo A1 - Hommel, Patrick A1 - Jaroszewicz, Bogdan A1 - Kirby, Keith J. A1 - Kopecky, Martin A1 - Lenoir, Jonathan A1 - Li, Daijiang A1 - Malis, Frantisek A1 - Mitchell, Fraser J. G. A1 - Naaf, Tobias A1 - Newman, Miles A1 - Petrik, Petr A1 - Reczynska, Kamila A1 - Schmidt, Wolfgang A1 - Standovar, Tibor A1 - Swierkosz, Krzysztof A1 - Van Calster, Hans A1 - Vild, Ondrej A1 - Wagner, Eva Rosa A1 - Wulf, Monika A1 - Verheyen, Kris T1 - Global environmental change effects on plant community composition trajectories depend upon management legacies JF - Global change biology N2 - The contemporary state of functional traits and species richness in plant communities depends on legacy effects of past disturbances. Whether temporal responses of community properties to current environmental changes are altered by such legacies is, however, unknown. We expect global environmental changes to interact with land-use legacies given different community trajectories initiated by prior management, and subsequent responses to altered resources and conditions. We tested this expectation for species richness and functional traits using 1814 survey-resurvey plot pairs of understorey communities from 40 European temperate forest datasets, syntheses of management transitions since the year 1800, and a trait database. We also examined how plant community indicators of resources and conditions changed in response to management legacies and environmental change. Community trajectories were clearly influenced by interactions between management legacies from over 200 years ago and environmental change. Importantly, higher rates of nitrogen deposition led to increased species richness and plant height in forests managed less intensively in 1800 (i.e., high forests), and to decreases in forests with a more intensive historical management in 1800 (i.e., coppiced forests). There was evidence that these declines in community variables in formerly coppiced forests were ameliorated by increased rates of temperature change between surveys. Responses were generally apparent regardless of sites’ contemporary management classifications, although sometimes the management transition itself, rather than historic or contemporary management types, better explained understorey responses. Main effects of environmental change were rare, although higher rates of precipitation change increased plant height, accompanied by increases in fertility indicator values. Analysis of indicator values suggested the importance of directly characterising resources and conditions to better understand legacy and environmental change effects. Accounting for legacies of past disturbance can reconcile contradictory literature results and appears crucial to anticipating future responses to global environmental change. KW - biodiversity change KW - climate change KW - disturbance regime KW - forestREplot KW - herbaceous layer KW - management intensity KW - nitrogen deposition KW - plant functional traits KW - time lag KW - vegetation resurvey Y1 - 2017 U6 - https://doi.org/10.1111/gcb.14030 SN - 1354-1013 SN - 1365-2486 VL - 24 IS - 4 SP - 1722 EP - 1740 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Reibold, Kerstin T1 - Settler Colonialism, Decolonization, and Climate Change JF - Journal of applied philosophy N2 - The article proposes that climate change makes enduring colonial injustices and structures visible. It focuses on the imposition and dominance of colonial concepts of land and self-determination on Indigenous peoples in settler states. It argues that if the dominance of these colonial frameworks remains unaddressed, the progressing climate change will worsen other colonial injustices, too. Specifically, Indigenous self-determination capabilities will be increasingly undermined, and Indigenous peoples will experience the loss of what they understand as relevant land from within their own ontologies of land. The article holds that even if settler states strive to repair colonial injustices, these efforts will be unsuccessful if climate change occurs and decolonization is pursued within the framework of a settler colonial ontology of land. Therefore, the article suggests, decolonization of the ontologies of land and concepts of self-determination is a precondition for a just response to climate change. KW - territorial rights KW - indigenous rights KW - climate change KW - colonialism Y1 - 2022 U6 - https://doi.org/10.1111/japp.12573 SN - 0264-3758 SN - 1468-5930 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Rolph, Rebecca A1 - Overduin, Pier Paul A1 - Ravens, Thomas A1 - Lantuit, Hugues A1 - Langer, Moritz T1 - ArcticBeach v1.0 BT - a physics-based parameterization of pan-Arctic coastline erosion JF - Frontiers in Earth Science N2 - In the Arctic, air temperatures are increasing and sea ice is declining, resulting in larger waves and a longer open water season, all of which intensify the thaw and erosion of ice-rich coasts. Climate change has been shown to increase the rate of Arctic coastal erosion, causing problems for Arctic cultural heritage, existing industrial, military, and civil infrastructure, as well as changes in nearshore biogeochemistry. Numerical models that reproduce historical and project future Arctic erosion rates are necessary to understand how further climate change will affect these problems, and no such model yet exists to simulate the physics of erosion on a pan-Arctic scale. We have coupled a bathystrophic storm surge model to a simplified physical erosion model of a permafrost coastline. This Arctic erosion model, called ArcticBeach v1.0, is a first step toward a physical parameterization of Arctic shoreline erosion for larger-scale models. It is forced by wind speed and direction, wave period and height, sea surface temperature, all of which are masked during times of sea ice cover near the coastline. Model tuning requires observed historical retreat rates (at least one value), as well as rough nearshore bathymetry. These parameters are already available on a pan-Arctic scale. The model is validated at three study sites at 1) Drew Point (DP), Alaska, 2) Mamontovy Khayata (MK), Siberia, and 3) Veslebogen Cliffs, Svalbard. Simulated cumulative retreat rates for DP and MK respectively (169 and 170 m) over the time periods studied at each site (2007-2016, and 1995-2018) are found to the same order of magnitude as observed cumulative retreat (172 and 120 m). The rocky Veslebogen cliffs have small observed cumulative retreat rates (0.05 m over 2014-2016), and our model was also able to reproduce this same order of magnitude of retreat (0.08 m). Given the large differences in geomorphology between the study sites, this study provides a proof-of-concept that ArcticBeach v1.0 can be applied on very different permafrost coastlines. ArcticBeach v1.0 provides a promising starting point to project retreat of Arctic shorelines, or to evaluate historical retreat in places that have had few observations. KW - permafrost KW - erosion KW - modelling KW - arctic KW - climate change Y1 - 2022 U6 - https://doi.org/10.3389/feart.2022.962208 SN - 2296-6463 VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Rybski, Diego A1 - Reusser, Dominik Edwin A1 - Winz, Anna-Lena A1 - Fichtner, Christina A1 - Sterzel, Till A1 - Kropp, Jürgen T1 - Cities as nuclei of sustainability? JF - Environment and Planning B: Urban Analytics and City Science N2 - We have assembled CO2 emission figures from collections of urban GHG emission estimates published in peer-reviewed journals or reports from research institutes and non-governmental organizations. Analyzing the scaling with population size, we find that the exponent is development dependent with a transition from super- to sub-linear scaling. From the climate change mitigation point of view, the results suggest that urbanization is desirable in developed countries. Further, we compare this analysis with a second scaling relation, namely the fundamental allometry between city population and area, and propose that density might be a decisive quantity too. Last, we derive the theoretical country-wide urban emissions by integration and obtain a dependence on the size of the largest city. KW - Scaling KW - cities KW - climate change KW - development process KW - allometry Y1 - 2017 U6 - https://doi.org/10.1177/0265813516638340 SN - 2399-8083 SN - 2399-8091 VL - 44 IS - 3 SP - 425 EP - 440 PB - Sage Publ. CY - London ER - TY - JOUR A1 - Sarmento, Juliano Sarmento A1 - Jeltsch, Florian A1 - Thuiller, Wilfried A1 - Higgins, Steven A1 - Midgley, Guy F. A1 - Rebelo, Anthony G. A1 - Rouget, Mathieu A1 - Schurr, Frank Martin T1 - Impacts of past habitat loss and future climate change on the range dynamics of South African Proteaceae JF - Diversity & distributions : a journal of biological invasions and biodiversity N2 - Aim To assess how habitat loss and climate change interact in affecting the range dynamics of species and to quantify how predicted range dynamics depend on demographic properties of species and the severity of environmental change. Location South African Cape Floristic Region. Methods We use data-driven demographic models to assess the impacts of past habitat loss and future climate change on range size, range filing and abundances of eight species of woody plants (Proteaceae). The species-specific models employ a hybrid approach that simulates population dynamics and long-distance dispersal on top of expected spatio-temporal dynamics of suitable habitat. Results Climate change was mainly predicted to reduce range size and range filling (because of a combination of strong habitat shifts with low migration ability). In contrast, habitat loss mostly decreased mean local abundance. For most species and response measures, the combination of habitat loss and climate change had the most severe effect. Yet, this combined effect was mostly smaller than expected from adding or multiplying effects of the individual environmental drivers. This seems to be because climate change shifts suitable habitats to regions less affected by habitat loss. Interspecific variation in range size responses depended mostly on the severity of environmental change, whereas responses in range filling and local abundance depended mostly on demographic properties of species. While most surviving populations concentrated in areas that remain climatically suitable, refugia for multiple species were overestimated by simply overlying habitat models and ignoring demography. Main conclusions Demographic models of range dynamics can simultaneously predict the response of range size, abundance and range filling to multiple drivers of environmental change. Demographic knowledge is particularly needed to predict abundance responses and to identify areas that can serve as biodiversity refugia under climate change. These findings highlight the need for data-driven, demographic assessments in conservation biogeography. KW - biodiversity refugia KW - CFR Proteaceae KW - climate change KW - demographic properties KW - habitat loss KW - local abundances KW - process-based range models KW - range filling KW - range size KW - species distribution models Y1 - 2013 U6 - https://doi.org/10.1111/ddi.12011 SN - 1366-9516 VL - 19 IS - 4 SP - 363 EP - 376 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Scherler, Dirk A1 - Bookhagen, Bodo A1 - Wulf, Hendrik A1 - Preusser, Frank A1 - Strecker, Manfred T1 - Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India JF - Earth & planetary science letters N2 - The response of surface processes to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution. In the Himalaya, most large rivers feature prominent fill terraces that record an imbalance between sediment supply and transport capacity, presumably due to past fluctuations in monsoon precipitation and/or effects of glaciation at high elevation. Here, we present volume estimates, chronological constraints, and Be-10-derived paleo-erosion rates from a prominent valley fill in the Yamuna catchment, Garhwal Himalaya, to elucidate the coupled response of rivers and hillslopes to Pleistocene climate change. Although precise age control is complicated due to methodological problems, the new data support formation of the valley fill during the late Pleistocene and its incision during the Holocene. We interpret this timing to indicate that changes in discharge and river-transport capacity were major controls. Compared to the present day, late Pleistocene hillslope erosion rates were higher by a factor of similar to 2-4, but appear to have decreased during valley aggradation. The higher late Pleistocene erosion rates are largely unrelated to glacial erosion and could be explained by enhanced sediment production on steep hillslopes due to increased periglacial activity that declined as temperatures increased. Alternatively, erosion rates that decrease during valley aggradation are also consistent with reduced landsliding from threshold hillslopes as a result of rising base levels. In that case, the similarity of paleo-erosion rates near the end of the aggradation period with modern erosion rates might imply that channels and hillslopes are not yet fully coupled everywhere and that present-day hillslope erosion rates may underrepresent long-term incision rates. (C) 2015 Elsevier B.V. All rights reserved. KW - paleo-erosion rates KW - climate change KW - river terraces KW - landscape evolution KW - hillslopes KW - Himalaya Y1 - 2015 U6 - https://doi.org/10.1016/j.epsl.2015.06.034 SN - 0012-821X SN - 1385-013X VL - 428 SP - 255 EP - 266 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Schewe, Jacob A1 - Levermann, Anders T1 - A statistically predictive model for future monsoon failure in India JF - Environmental research letters N2 - Indian monsoon rainfall is vital for a large share of the world's population. Both reliably projecting India's future precipitation and unraveling abrupt cessations of monsoon rainfall found in paleorecords require improved understanding of its stability properties. While details of monsoon circulations and the associated rainfall are complex, full-season failure is dominated by large-scale positive feedbacks within the region. Here we find that in a comprehensive climate model, monsoon failure is possible but very rare under pre-industrial conditions, while under future warming it becomes much more frequent. We identify the fundamental intraseasonal feedbacks that are responsible for monsoon failure in the climate model, relate these to observational data, and build a statistically predictive model for such failure. This model provides a simple dynamical explanation for future changes in the frequency distribution of seasonal mean all-Indian rainfall. Forced only by global mean temperature and the strength of the Pacific Walker circulation in spring, it reproduces the trend as well as the multidecadal variability in the mean and skewness of the distribution, as found in the climate model. The approach offers an alternative perspective on large-scale monsoon variability as the result of internal instabilities modulated by pre-seasonal ambient climate conditions. KW - monsoon failure KW - climate change KW - coupled climate model KW - stochastic model KW - non-linear dynamics Y1 - 2012 U6 - https://doi.org/10.1088/1748-9326/7/4/044023 SN - 1748-9326 VL - 7 IS - 4 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Schneider, Birgit T1 - Burning worlds of cartography: a critical approach to climate cosmograms of the Anthropocene JF - Geo : geography and environment N2 - Climate science today makes use of a variety of red globes to explore and communicate findings. These transform the iconography which informs this image: the idealised, even mythical vision of the blue, vulnerable and perfect marble is impaired by the application of the colours yellow and red. Since only predictions that employ a lot of red seem to exist, spectators are confronted with the message that the future Earth that might turn out as envisaged here is undesirable. Here intuitively powerful narrations of the end of the world may connect. By employing methods of art history and visual analysis, and building on examples from current Intergovernmental Panel on Climate Change reports and future scenario maps, this article explores how burning world images bear - intentionally or not - elements of horror and shock. My question explored here is as follows: should 'burning world' images be understood as a new and powerful cosmology? KW - cartography KW - visualisation KW - climate change KW - whole Earth images Y1 - 2016 U6 - https://doi.org/10.1002/geo2.27 SN - 2054-4049 VL - 3 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Schneider, Birgit A1 - Walsh, Lynda T1 - The politics of zoom BT - Problems with downscaling climate visualizations JF - Geo: Geography and Environment N2 - Following the mandate in the Paris Agreement for signatories to provide “climate services” to their constituents, “downscaled” climate visualizations are proliferating. But the process of downscaling climate visualizations does not neutralize the political problems with their synoptic global sources—namely, their failure to empower communities to take action and their replication of neoliberal paradigms of globalization. In this study we examine these problems as they apply to interactive climate‐visualization platforms, which allow their users to localize global climate information to support local political action. By scrutinizing the political implications of the “zoom” tool from the perspective of media studies and rhetoric, we add to perspectives of cultural cartography on the issue of scaling from our fields. Namely, we break down the cinematic trope of “zooming” to reveal how it imports the political problems of synopticism to the level of individual communities. As a potential antidote to the politics of zoom, we recommend a downscaling strategy of connectivity, which associates rather than reduces situated views of climate to global ones. KW - climate change KW - climate services KW - climate visualization KW - connectivity KW - downscaling KW - spherical KW - synopticism KW - zoom Y1 - 2019 U6 - https://doi.org/10.1002/geo2.70 SN - 2054-4049 VL - 6 IS - 1 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Schultes, Anselm A1 - Piontek, Franziska A1 - Soergel, Bjoern A1 - Rogelj, Joeri A1 - Baumstark, Lavinia A1 - Kriegler, Elmar A1 - Edenhofer, Ottmar A1 - Luderer, Gunnar T1 - Economic damages from on-going climate change imply deeper near-term emission cuts JF - Environmental research letters N2 - Pathways toward limiting global warming to well below 2 ∘C, as used by the IPCC in the Fifth Assessment Report, do not consider the climate impacts already occurring below 2 ∘C. Here we show that accounting for such damages significantly increases the near-term ambition of transformation pathways. We use econometric estimates of climate damages on GDP growth and explicitly model the uncertainty in the persistence time of damages. The Integrated Assessment Model we use includes the climate system and mitigation technology detail required to derive near-term policies. We find an optimal carbon price of $115 per tonne of CO2 in 2030. The long-term persistence of damages, while highly uncertain, is a main driver of the near-term carbon price. Accounting for damages on economic growth increases the gap between the currently pledged nationally determined contributions and the welfare-optimal 2030 emissions by two thirds, compared to pathways considering the 2 ∘C limit only. KW - climate change KW - climate mitigation KW - climate impacts KW - integrated assessment Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/ac27ce SN - 1748-9326 VL - 16 IS - 10 PB - IOP Publishing CY - Bristol ER - TY - JOUR A1 - Schwarzer, Christian A1 - Joshi, Jasmin Radha T1 - Ecotypic differentiation, hybridization and clonality facilitate the persistence of a cold-adapted sedge in European bogs JF - Biological journal of the Linnean Society : a journal of evolution N2 - Recent research has shown that many cold-adapted species survived the last glacial maximum (LGM) in northern refugia. Whether this evolutionary history has had consequences for their genetic diversity and adaptive potential remains unknown. We sampled 14 populations of Carex limosa, a sedge specialized to bog ecosystems, along a latitudinal gradient from its Scandinavian core to the southern lowland range-margin in Germany. Using microsatellite and experimental common-garden data, we evaluated the impacts of global climate change along this gradient and assessed the conservation status of the southern marginal populations. Microsatellite data revealed two highly distinct genetic groups and hybrid individuals. In our common-garden experiment, the two groups showed divergent responses to increased nitrogen/phosphorus (N/P) availability, suggesting ecotypic differentiation. Each group formed genetically uniform populations at both northern and southern sampling areas. Mixed populations occurred throughout our sampling area, an area that was entirely glaciated during the LGM. The fragmented distribution implies allopatric divergence at geographically separated refugia that putatively differed in N/P availability. Molecular data and an observed low hybrid fecundity indicate the importance of clonal reproduction for hybrid populations. At the southern range-margin, however, all populations showed effects of clonality, lowered fecundity and low competitiveness, suggesting abiotic and biotic constraints to population persistence. KW - biogeography KW - bog/mire plants KW - Carex limosa KW - climate change KW - glacial divergence KW - global change KW - leading/trailing edge KW - population differentiation KW - sexual/asexual reproduction Y1 - 2019 U6 - https://doi.org/10.1093/biolinnean/blz141 SN - 0024-4066 SN - 1095-8312 VL - 128 IS - 4 SP - 909 EP - 925 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Sedova, Barbora A1 - Kalkuhl, Matthias A1 - Mendelsohn, Robert T1 - Distributional impacts of weather and climate in rural India JF - Economics of disasters and climate change N2 - Climate-related costs and benefits may not be evenly distributed across the population. We study distributional implications of seasonal weather and climate on within-country inequality in rural India. Utilizing a first difference approach, we find that the poor are more sensitive to weather variations than the non-poor. The poor respond more strongly to (seasonal) temperature changes: negatively in the (warm) spring season, more positively in the (cold) rabi season. Less precipitation is harmful to the poor in the monsoon kharif season and beneficial in the winter and spring seasons. We show that adverse weather aggravates inequality by reducing consumption of the poor farming households. Future global warming predicted under RCP8.5 is likely to exacerbate these effects, reducing consumption of poor farming households by one third until the year 2100. We also find inequality in consumption across seasons with higher consumption during the harvest and lower consumption during the sowing seasons. KW - climate change KW - weather KW - inequality KW - household analysis KW - India KW - econometrics Y1 - 2019 U6 - https://doi.org/10.1007/s41885-019-00051-1 SN - 2511-1280 SN - 2511-1299 VL - 4 IS - 1 SP - 5 EP - 44 PB - Springer CY - Cham ER - TY - JOUR A1 - Seifert, Linda I. A1 - Weithoff, Guntram A1 - Vos, Matthijs T1 - Extreme heat changes post-heat wave community reassembly JF - Ecology and evolution N2 - Climate forecasts project further increases in extremely high-temperature events. These present threats to biodiversity, as they promote population declines and local species extinctions. This implies that ecological communities will need to rely more strongly on recovery processes, such as recolonization from a meta-community context. It is poorly understood how differences in extreme event intensity change the outcome of subsequent community reassembly and if such extremes modify the biotic environment in ways that would prevent the successful re-establishment of lost species. We studied replicated aquatic communities consisting of algae and herbivorous rotifers in a design that involved a control and two different heat wave intensity treatments (29 degrees C and 39 degrees C). Animal species that suffered heat-induced extinction were subsequently re-introduced at the same time and density, in each of the two treatments. The 39 degrees C treatment led to community closure in all replicates, meaning that a previously successful herbivore species could not re-establish itself in the postheat wave community. In contrast, such closure never occurred after a 29 degrees C event. Heat wave intensity determined the number of herbivore extinctions and strongly affected algal relative abundances. Re-introduced herbivore species were thus confronted with significantly different food environments. This ecological legacy generated by heat wave intensity led to differences in the failure or success of herbivore species re-introductions. Reassembly was significantly more variable, and hence less predictable, after an extreme heat wave, and was more canalized after a moderate one. Our results pertain to relatively simple communities, but they suggest that ecological legacies introduced by extremely high-temperature events may change subsequent ecological recovery and even prevent the successful re-establishment of lost species. Knowing the processes promoting and preventing ecological recovery is crucial to the success of species re-introduction programs and to our ability to restore ecosystems damaged by environmental extremes. KW - Biodiversity KW - climate change KW - conservation KW - ecological restoration KW - extinction KW - extreme temperature events KW - global warming KW - maximum temperature KW - variability Y1 - 2015 U6 - https://doi.org/10.1002/ece3.1490 SN - 2045-7758 VL - 5 IS - 11 SP - 2140 EP - 2148 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Skålevåg, Amalie A1 - Vormoor, Klaus Josef T1 - Daily streamflow trends in Western versus Eastern Norway and their attribution to hydro-meteorological drivers JF - Hydrological processes : an international journal N2 - Regional warming and modifications in precipitation regimes has large impacts on streamflow in Norway, where both rainfall and snowmelt are important runoff generating processes. Hydrological impacts of recent changes in climate are usually investigated by trend analyses applied on annual, seasonal, or monthly time series. None of these detect sub-seasonal changes and their underlying causes. This study investigated sub-seasonal changes in streamflow, rainfall, and snowmelt in 61 and 51 catchments respectively in Western (Vestlandet) and Eastern (ostlandet) Norway by applying the Mann-Kendall test and Theil-Sen estimator on 10-day moving averaged daily time series over a 30-year period (1983-2012). The relative contribution of rainfall versus snowmelt to daily streamflow and the changes therein have also been estimated to identify the changing relevance of these driving processes over the same period. Detected changes in 10-day moving averaged daily streamflow were finally attributed to changes in the most important hydro-meteorological drivers using multiple-regression models with increasing complexity. Earlier spring flow timing in both regions occur due to earlier snowmelt. ostlandet shows increased summer streamflow in catchments up to 1100 m a.s.l. and slightly increased winter streamflow in about 50% of the catchments. Trend patterns in Vestlandet are less coherent. The importance of rainfall has increased in both regions. Attribution of trends reveals that changes in rainfall and snowmelt can explain some streamflow changes where they are dominant processes (e.g., spring snowmelt in ostlandet and autumn rainfall in Vestlandet). Overall, the detected streamflow changes can be best explained by adding temperature trends as an additional predictor, indicating the relevance of additional driving processes such as increased glacier melt and evapotranspiration. KW - attribution KW - climate change KW - hydrological change KW - hydro-meteorological KW - driver KW - streamflow trend KW - trend analysis Y1 - 2021 U6 - https://doi.org/10.1002/hyp.14329 SN - 0885-6087 SN - 1099-1085 VL - 35 IS - 8 PB - Wiley CY - New York ER - TY - JOUR A1 - Smith, Taylor A1 - Bookhagen, Bodo T1 - Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave Data JF - Frontiers in Earth Science N2 - High Mountain Asia (HMA) is dependent upon both the amount and timing of snow and glacier meltwater. Previous model studies and coarse resolution (0.25° × 0.25°, ∼25 km × 25 km) passive microwave assessments of trends in the volume and timing of snowfall, snowmelt, and glacier melt in HMA have identified key spatial and seasonal heterogeneities in the response of snow to changes in regional climate. Here we use recently developed, continuous, internally consistent, and high-resolution passive microwave data (3.125 km × 3.125 km, 1987–2016) from the special sensor microwave imager instrument family to refine and extend previous estimates of changes in the snow regime of HMA. We find an overall decline in snow volume across HMA; however, there exist spatially contiguous regions of increasing snow volume—particularly during the winter season in the Pamir, Karakoram, Hindu Kush, and Kunlun Shan. Detailed analysis of changes in snow-volume trends through time reveal a large step change from negative trends during the period 1987–1997, to much more positive trends across large regions of HMA during the periods 1997–2007 and 2007–2016. We also find that changes in high percentile monthly snow-water volume exhibit steeper trends than changes in low percentile snow-water volume, which suggests a reduction in the frequency of high snow-water volumes in much of HMA. Regions with positive snow-water storage trends generally correspond to regions of positive glacier mass balances. KW - snow KW - glacier KW - climate change KW - passive microwave KW - special sensor microwave imager KW - special sensor microwave imager/sounder Y1 - 2020 U6 - https://doi.org/10.3389/feart.2020.559175 SN - 2296-6463 VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Souto-Veiga, Rodrigo A1 - Groeneveld, Juergen A1 - Enright, Neal J. A1 - Fontaine, Joseph B. A1 - Jeltsch, Florian T1 - Declining pollination success reinforces negative climate and fire change impacts in a serotinous, fire-killed plant JF - Plant ecology : an international journal N2 - Climate change projections predict that Mediterranean-type ecosystems (MTEs) are becoming hotter and drier and that fires will become more frequent and severe. While most plant species in these important biodiversity hotspots are adapted to hot, dry summers and recurrent fire, the Interval Squeeze framework suggests that reduced seed production (demographic shift), reduced seedling establishment after fire (post fire recruitment shift), and reduction in the time between successive fires (fire interval shift) will threaten fire killed species under climate change. One additional potential driver of accelerated species decline, however, has not been considered so far: the decrease in pollination success observed in many ecosystems worldwide has the potential to further reduce seed accumulation and thus population persistence also in these already threatened systems. Using the well-studied fire-killed and serotinous shrub species Banksia hookeriana as an example, we apply a new spatially implicit population simulation model to explore population dynamics under past (1988-2002) and current (2003-2017) climate conditions, deterministic and stochastic fire regimes, and alternative scenarios of pollination decline. Overall, model results suggest that while B. hookeriana populations were stable under past climate conditions, they will not continue to persist under current (and prospective future) climate. Negative effects of climatic changes and more frequent fires are reinforced by the measured decline in seed set leading to further reduction in the mean persistence time by 12-17%. These findings clearly indicate that declining pollination rates can be a critical factor that increases further the pressure on the persistence of fire-killed plants. Future research needs to investigate whether other fire-killed species are similarly threatened, and if local population extinction may be compensated by recolonization events, facilitating persistence in spatially structured meta-communities. KW - climate change KW - fire frequency KW - interval squeeze KW - pollination KW - process-based simulation model KW - mediterranean-type ecosystem Y1 - 2022 U6 - https://doi.org/10.1007/s11258-022-01244-7 SN - 1385-0237 SN - 1573-5052 VL - 223 IS - 7 SP - 863 EP - 881 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Steffen, Will A1 - Röckstrom, Johan A1 - Richardson, Katherine A1 - Lenton, Timothy M. A1 - Folke, Carl A1 - Liverman, Diana A1 - Summerhayes, Colin P. A1 - Barnosky, Anthony D. A1 - Cornell, Sarah E. A1 - Crucifix, Michel A1 - Donges, Jonathan A1 - Fetzer, Ingo A1 - Lade, Steven J. A1 - Scheffer, Marten A1 - Winkelmann, Ricarda A1 - Schellnhuber, Hans Joachim T1 - Trajectories of the Earth System in the Anthropocene JF - Proceedings of the National Academy of Sciences of the United States of America N2 - We explore the risk that self-reinforcing feedbacks could push the Earth System toward a planetary threshold that, if crossed, could prevent stabilization of the climate at intermediate temperature rises and cause continued warming on a "Hothouse Earth" pathway even as human emissions are reduced. Crossing the threshold would lead to a much higher global average temperature than any interglacial in the past 1.2 million years and to sea levels significantly higher than at any time in the Holocene. We examine the evidence that such a threshold might exist and where it might be. If the threshold is crossed, the resulting trajectory would likely cause serious disruptions to ecosystems, society, and economies. Collective human action is required to steer the Earth System away from a potential threshold and stabilize it in a habitable interglacial-like state. Such action entails stewardship of the entire Earth System-biosphere, climate, and societies-and could include decarbonization of the global economy, enhancement of biosphere carbon sinks, behavioral changes, technological innovations, new governance arrangements, and transformed social values. KW - Earth System trajectories KW - climate change KW - Anthropocene KW - biosphere feedbacks KW - tipping elements Y1 - 2018 U6 - https://doi.org/10.1073/pnas.1810141115 SN - 0027-8424 VL - 115 IS - 33 SP - 8252 EP - 8259 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Stiegler, Jonas A1 - Pahl, Janice A1 - Guillen, Rafael Arce A1 - Ullmann, Wiebke A1 - Blaum, Niels T1 - The heat is on BT - impacts of rising temperature on the activity of a common European mammal JF - Frontiers in Ecology and Evolution N2 - Climate conditions severely impact the activity and, consequently, the fitness of wildlife species across the globe. Wildlife can respond to new climatic conditions, but the pace of human-induced change limits opportunities for adaptation or migration. Thus, how these changes affect behavior, movement patterns, and activity levels remains unclear. In this study, we investigate how extreme weather conditions affect the activity of European hares (Lepus europaeus) during their peak reproduction period. When hares must additionally invest energy in mating, prevailing against competitors, or lactating, we investigated their sensitivities to rising temperatures, wind speed, and humidity. To quantify their activity, we used the overall dynamic body acceleration (ODBA) calculated from tri-axial acceleration measurements of 33 GPS-collared hares. Our analysis revealed that temperature, humidity, and wind speed are important in explaining changes in activity, with a strong response for high temperatures above 25 & DEG;C and the highest change in activity during temperature extremes of over 35 & DEG;C during their inactive period. Further, we found a non-linear relationship between temperature and activity and an interaction of activity changes between day and night. Activity increased at higher temperatures during the inactive period (day) and decreased during the active period (night). This decrease was strongest during hot tropical nights. At a stage of life when mammals such as hares must substantially invest in reproduction, the sensitivity of females to extreme temperatures was particularly pronounced. Similarly, both sexes increased their activity at high humidity levels during the day and low wind speeds, irrespective of the time of day, while the effect of humidity was stronger for males. Our findings highlight the importance of understanding the complex relationships between extreme weather conditions and mammal behavior, critical for conservation and management. With ongoing climate change, extreme weather events such as heat waves and heavy rainfall are predicted to occur more often and last longer. These events will directly impact the fitness of hares and other wildlife species and hence the population dynamics of already declining populations across Europe. KW - activity KW - ODBA KW - animal tracking KW - European hare KW - extreme weather events KW - climate change Y1 - 2023 U6 - https://doi.org/10.3389/fevo.2023.1193861 SN - 2296-701X VL - 11 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Pestryakova, Luidmila Agafyevna A1 - Epp, Laura Saskia A1 - Herzschuh, Ulrike T1 - Phylogenetic diversity and environment form assembly rules for Arctic diatom genera BT - a study on recent and ancient sedimentary DNA JF - Journal of Biogeography N2 - Aim This study investigates taxonomic and phylogenetic diversity in diatom genera to evaluate assembly rules for eukaryotic microbes across the Siberian tree line. We first analysed how phylogenetic distance relates to taxonomic richness and turnover. Second, we used relatedness indices to evaluate if environmental filtering or competition influences the assemblies in space and through time. Third, we used distance-based ordination to test which environmental variables shape diatom turnover. Location Yakutia and Taymyria, Russia: we sampled 78 surface sediments and a sediment core, extending to 7,000 years before present, to capture the forest-tundra transition in space and time respectively. Taxon Arctic freshwater diatoms. Methods We applied metabarcoding to retrieve diatom diversity from surface and core sedimentary DNA. The taxonomic assignment binned sequence types (lineages) into genera and created taxonomic (abundance of lineages within different genera) and phylogenetic datasets (phylogenetic distances of lineages within different genera). Results Contrary to our expectations, we find a unimodal relationship between phylogenetic distance and richness in diatom genera. We discern a positive relationship between phylogenetic distance and taxonomic turnover in spatially and temporally distributed diatom genera. Furthermore, we reveal positive relatedness indices in diatom genera across the spatial environmental gradient and predominantly in time slices at a single location, with very few exceptions assuming effects of competition. Distance-based ordination of taxonomic and phylogenetic turnover indicates that lake environment variables, like HCO3- and water depth, largely explain diatom turnover. Main conclusion Phylogenetic and abiotic assembly rules are important in understanding the regional assembly of diatom genera across lakes in the Siberian tree line ecotone. Using a space-time approach we are able to exclude the influence of geography and elucidate that lake environmental variables primarily shape the assemblies. We conclude that some diatom genera have greater capabilities to adapt to environmental changes, whereas others will be putatively replaced or lost due to the displacement of the Arctic tundra biome under recent global warming. KW - ancient sedimentary DNA KW - Arctic lakes KW - assembly rules KW - climate change KW - diatoms KW - environmental filtering KW - phylogenetic diversity KW - Siberian tree line Y1 - 2020 U6 - https://doi.org/10.1111/jbi.13786 SN - 0305-0270 SN - 1365-2699 VL - 47 IS - 5 SP - 1166 EP - 1179 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Strauss, Benjamin H. A1 - Kulp, Scott A1 - Levermann, Anders T1 - Carbon choices determine US cities committed to futures below sea level JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Anthropogenic carbon emissions lock in long-term sea-level rise that greatly exceeds projections for this century, posing profound challenges for coastal development and cultural legacies. Analysis based on previously published relationships linking emissions to warming and warming to rise indicates that unabated carbon emissions up to the year 2100 would commit an eventual global sea-level rise of 4.3-9.9 m. Based on detailed topographic and population data, local high tide lines, and regional long-term sea-level commitment for different carbon emissions and ice sheet stability scenarios, we compute the current population living on endangered land at municipal, state, and national levels within the United States. For unabated climate change, we find that land that is home to more than 20 million people is implicated and is widely distributed among different states and coasts. The total area includes 1,185-1,825 municipalities where land that is home to more than half of the current population would be affected, among them at least 21 cities exceeding 100,000 residents. Under aggressive carbon cuts, more than half of these municipalities would avoid this commitment if the West Antarctic Ice Sheet remains stable. Similarly, more than half of the US population-weighted area under threat could be spared. We provide lists of implicated cities and state populations for different emissions scenarios and with and without a certain collapse of the West Antarctic Ice Sheet. Although past anthropogenic emissions already have caused sea-level commitment that will force coastal cities to adapt, future emissions will determine which areas we can continue to occupy or may have to abandon. KW - climate change KW - climate impacts KW - sea-level rise Y1 - 2015 U6 - https://doi.org/10.1073/pnas.1511186112 SN - 0027-8424 VL - 112 IS - 44 SP - 13508 EP - 13513 PB - National Acad. of Sciences CY - Washington ER - TY - JOUR A1 - Sælen, Håkon A1 - Hovi, Jon A1 - Sprinz, Detlef F. A1 - Underdal, Arild T1 - How US withdrawal might influence cooperation under the Paris climate agreement JF - Environmental science & policy N2 - Using a novel agent-based model, we study how US withdrawal might influence the political process established by the Paris Agreement, and hence the prospects for reaching the collective goal to limit warming below 2 degrees C. Our model enables us to analyze to what extent reaching this goal despite US withdrawal would place more stringent requirements on other core elements of the Paris cooperation process. We find, first, that the effect of a US withdrawal depends critically on the extent to which member countries reciprocate others' promises and contributions. Second, while the 2 degrees C goal will likely be reached only under a very small set of conditions in any event, even temporary US withdrawal will further narrow this set significantly. Reaching this goal will then require other countries to step up their ambition at the first opportunity and to comply nearly 100% with their pledges, while maintaining high confidence in the Paris Agreements institutions. Third, although a US withdrawal will first primarily affect the United States' own emissions, it will eventually prove even more detrimental to other countries' emissions. KW - climate change KW - Paris agreement KW - President Trump KW - 2 degrees C target KW - agent-based modeling KW - reciprocity Y1 - 2020 U6 - https://doi.org/10.1016/j.envsci.2020.03.011 SN - 1462-9011 SN - 1873-6416 VL - 108 SP - 121 EP - 132 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Tabares Jimenez, Ximena del Carmen A1 - Zimmermann, Heike Hildegard A1 - Dietze, Elisabeth A1 - Ratzmann, Gregor A1 - Belz, Lukas A1 - Vieth-Hillebrand, Andrea A1 - Dupont, Lydie A1 - Wilkes, Heinz A1 - Mapani, Benjamin A1 - Herzschuh, Ulrike T1 - Vegetation state changes in the course of shrub encroachment in an African savanna since about 1850 CE and their potential drivers JF - Ecology and evolution N2 - Shrub encroachment has far-reaching ecological and economic consequences in many ecosystems worldwide. Yet, compositional changes associated with shrub encroachment are often overlooked despite having important effects on ecosystem functioning. We document the compositional change and potential drivers for a northern Namibian Combretum woodland transitioning into a Terminalia shrubland. We use a multiproxy record (pollen, sedimentary ancient DNA, biomarkers, compound-specific carbon (delta C-13) and deuterium (delta D) isotopes, bulk carbon isotopes (delta(13)Corg), grain size, geochemical properties) from Lake Otjikoto at high taxonomical and temporal resolution. We provide evidence that state changes in semiarid environments may occur on a scale of one century and that transitions between stable states can span around 80 years and are characterized by a unique vegetation composition. We demonstrate that the current grass/woody ratio is exceptional for the last 170 years, as supported by n-alkane distributions and the delta C-13 and delta(13)Corg records. Comparing vegetation records to environmental proxy data and census data, we infer a complex network of global and local drivers of vegetation change. While our delta D record suggests physiological adaptations of woody species to higher atmospheric pCO(2) concentration and drought, our vegetation records reflect the impact of broad-scale logging for the mining industry, and the macrocharcoal record suggests a decrease in fire activity associated with the intensification of farming. Impact of selective grazing is reflected by changes in abundance and taxonomical composition of grasses and by an increase of nonpalatable and trampling-resistant taxa. In addition, grain-size and spore records suggest changes in the erodibility of soils because of reduced grass cover. Synthesis. We conclude that transitions to an encroached savanna state are supported by gradual environmental changes induced by management strategies, which affected the resilience of savanna ecosystems. In addition, feedback mechanisms that reflect the interplay between management legacies and climate change maintain the encroached state. KW - climate change KW - fossil pollen KW - land-use change KW - savanna ecology KW - sedimentary ancient DNA KW - state and transition KW - tree-grass interactions Y1 - 2019 U6 - https://doi.org/10.1002/ece3.5955 SN - 2045-7758 VL - 10 IS - 2 SP - 962 EP - 979 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Tape, Ken D. A1 - Jones, Benjamin M. A1 - Arp, Christopher D. A1 - Nitze, Ingmar A1 - Grosse, Guido T1 - Tundra be dammed BT - beaver colonization of the arctic JF - Global change biology N2 - Increasing air temperatures are changing the arctic tundra biome. Permafrost is thawing, snow duration is decreasing, shrub vegetation is proliferating, and boreal wildlife is encroaching. Here we present evidence of the recent range expansion of North American beaver (Castor canadensis) into the Arctic, and consider how this ecosystem engineer might reshape the landscape, biodiversity, and ecosystem processes. We developed a remote sensing approach that maps formation and disappearance of ponds associated with beaver activity. Since 1999, 56 new beaver pond complexes were identified, indicating that beavers are colonizing a predominantly tundra region (18,293km(2)) of northwest Alaska. It is unclear how improved tundra stream habitat, population rebound following overtrapping for furs, or other factors are contributing to beaver range expansion. We discuss rates and likely routes of tundra beaver colonization, as well as effects on permafrost, stream ice regimes, and freshwater and riparian habitat. Beaver ponds and associated hydrologic changes are thawing permafrost. Pond formation increases winter water temperatures in the pond and downstream, likely creating new and more varied aquatic habitat, but specific biological implications are unknown. Beavers create dynamic wetlands and are agents of disturbance that may enhance ecosystem responses to warming in the Arctic. KW - arctic tundra KW - beaver KW - climate change KW - permafrost KW - population recovery KW - salmon KW - shrub expansion KW - stream Y1 - 2018 U6 - https://doi.org/10.1111/gcb.14332 SN - 1354-1013 SN - 1365-2486 VL - 24 IS - 10 SP - 4478 EP - 4488 PB - Wiley CY - Hoboken ER -