TY - JOUR A1 - Tung, Wing Tai A1 - Maring, Janita A. A1 - Xu, Xun A1 - Liu, Yue A1 - Becker, Matthias A1 - Somesh, Dipthi Bachamanda A1 - Klose, Kristin A1 - Wang, Weiwei A1 - Sun, Xianlei A1 - Ullah, Imran A1 - Kratz, Karl A1 - Neffe, Axel T. A1 - Stamm, Christof A1 - Ma, Nan A1 - Lendlein, Andreas T1 - In vivo performance of a cell and factor free multifunctional fiber mesh modulating postinfarct myocardial remodeling JF - Advanced Functional Materials N2 - Guidance of postinfarct myocardial remodeling processes by an epicardial patch system may alleviate the consequences of ischemic heart disease. As macrophages are highly relevant in balancing immune response and regenerative processes their suitable instruction would ensure therapeutic success. A polymeric mesh capable of attracting and instructing monocytes by purely physical cues and accelerating implant degradation at the cell/implant interface is designed. In a murine model for myocardial infarction the meshes are compared to those either coated with extracellular matrix or loaded with induced cardiomyocyte progenitor cells. All implants promote macrophage infiltration and polarization in the epicardium, which is verified by in vitro experiments. 6 weeks post-MI, especially the implantation of the mesh attenuates left ventricular adverse remodeling processes as shown by reduced infarct size (14.7% vs 28-32%) and increased wall thickness (854 mu m vs 400-600 mu m), enhanced angiogenesis/arteriogenesis (more than 50% increase compared to controls and other groups), and improved heart function (ejection fraction = 36.8% compared to 12.7-31.3%). Upscaling as well as process controls is comprehensively considered in the presented mesh fabrication scheme to warrant further progression from bench to bedside. KW - bioinstructive materials KW - cardiac regeneration KW - function by structure; KW - modulation of in vivo regeneration KW - multifunctional biomaterials Y1 - 2022 U6 - https://doi.org/10.1002/adfm.202110179 SN - 1616-301X SN - 1616-3028 VL - 32 IS - 31 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Haase, Tobias A1 - Krost, Annalena A1 - Sauter, Tilman A1 - Kratz, Karl A1 - Peter, Jan A1 - Kamann, Stefanie A1 - Jung, Friedrich A1 - Lendlein, Andreas A1 - Zohlnhöfer, Dietlind A1 - Rüder, Constantin T1 - In vivo biocompatibility assessment of poly (ether imide) electrospun scaffolds JF - Journal of Tissue Engineering and Regenerative Medicine N2 - Poly(ether imide) (PEI), which can be chemically functionalized with biologically active ligands, has emerged as a potential biomaterial for medical implants. Electrospun PEI scaffolds have shown advantageous properties, such as enhanced endothelial cell adherence, proliferation and low platelet adhesion in in vitro experiments. In this study, the in vivo behaviour of electrospun PEI scaffolds and PEI films was examined in a murine subcutaneous implantation model. Electrospun PEI scaffolds and films were surgically implanted subcutaneously in the dorsae of mice. The surrounding subcutaneous tissue response was examined via histopathological examination at 7 and 28days after implantation. No serious adverse events were observed for both types of PEI implants. The presence of macrophages or foreign body giant cells in the vicinity of the implants and the formation of a fibrous capsule indicated a normal foreign body reaction towards PEI films and scaffolds. Capsule thickness and inflammatory infiltration cells significantly decreased for PEI scaffolds during days 7-28 while remaining unchanged for PEI films. The infiltration of cells into the implant was observed for PEI scaffolds 7days after implantation and remained stable until 28days of implantation. Additionally some, but not all, PEI scaffold implants induced the formation of functional blood vessels in the vicinity of the implants. Conclusively, this study demonstrates the in vivo biocompatibility of PEI implants, with favourable properties of electrospun PEI scaffolds regarding tissue integration and wound healing. KW - poly(ether imide) KW - in vivo study KW - electrospun scaffold KW - capsule formation KW - foreign body giant cells KW - vascularization Y1 - 2017 U6 - https://doi.org/10.1002/term.2002 SN - 1932-6254 SN - 1932-7005 VL - 11 IS - 4 SP - 1034 EP - 1044 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Rickert, D. A1 - Lendlein, Andreas A1 - Schmidt, A. M. A1 - Kelch, S. A1 - Roehlke, W. A1 - Fuhrmann, R. A1 - Franke, R. P. T1 - In vitro cytotoxicity testing of AB-polymer networks based on oligo(epsilon-caprolactone) segments after different sterilization techniques Y1 - 2003 ER - TY - JOUR A1 - Fang, Liang A1 - Gould, Oliver E. C. A1 - Lysyakova, Liudmila A1 - Jiang, Yi A1 - Sauter, Tilman A1 - Frank, Oliver A1 - Becker, Tino A1 - Schossig, Michael A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Implementing and quantifying the shape-memory effect of single polymeric micro/nanowires with an atomic force microscope JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - The implementation of shape-memory effects (SME) in polymeric micro- or nano-objects currently relies on the application of indirect macroscopic manipulation techniques, for example, stretchable molds or phantoms, to ensembles of small objects. Here, we introduce a method capable of the controlled manipulation and SME quantification of individual micro- and nano-objects in analogy to macroscopic thermomechanical test procedures. An atomic force microscope was utilized to address individual electro-spun poly(ether urethane) (PEU) micro- or nanowires freely suspended between two micropillars on a micro-structured silicon substrate. In this way, programming strains of 10 +/- 1% or 21 +/- 1% were realized, which could be successfully fixed. An almost complete restoration of the original free-suspended shape during heating confirmed the excellent shape-memory performance of the PEU wires. Apparent recovery stresses of sigma(max,app)=1.2 +/- 0.1 and 33.3 +/- 0.1MPa were obtained for a single microwire and nanowire, respectively. The universal AFM test platform described here enables the implementation and quantification of a thermomechanically induced function for individual polymeric micro- and nanosystems. KW - cyclic thermomechanical testing KW - atomic force microscopy KW - soft matter micro- and nanowires KW - shape-memory effect KW - materials science Y1 - 2018 U6 - https://doi.org/10.1002/cphc.201701362 SN - 1439-4235 SN - 1439-7641 VL - 19 IS - 16 SP - 2078 EP - 2084 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Behl, Marc A1 - Balk, Maria A1 - Lützow, Karola A1 - Lendlein, Andreas T1 - Impact of block sequence on the phase morphology of multiblock copolymers obtained by high-throughput robotic synthesis JF - European polymer journal : EPJ N2 - The chemical nature, the number length of integrated building blocks, as well as their sequence structure impact the phase morphology of multiblock copolymers (MBC) consisting of two non-miscible block types. We hypothesized that a strictly alternating sequence should favour phase segregation and in this way the elastic properties. A library of well-defined MBCs composed of two different hydrophobic, semi-crystalline blocks providing domains with well-separated melting temperatures (T(m)s) were synthesized from the same type of precursor building blocks as strictly alternating (MBCsalt) or random (MBCsran) MBCs and compared. Three different series of MBCsalt or MBCsran were synthesized by high-throughput synthesis by coupling oligo(e-caprolactone) (OCL) of different molecular weights (2, 4, and 8 kDa) with oligotetrahydrofuran (OTHF, 2.9 kDa) via Steglich esterification in which the molar ratio of the reaction partners was slightly adjusted. Maximum of weight average molecular weight (M-w) were 65,000 g center dot mol(-1), 165,000 g center dot mol(-1), and 168,000 g center dot mol(-1) for MBCsalt and 80,500 g center dot mol(-1), 100,000 g center dot mol(-1), and 147,600 g center dot mol(-1) for MBCsran. When Mw increased, a decrease of both Tms associated to the melting of the OCL and OTHF domains was observed for all MBCs. T-m (OTHF) of MBCsran was always higher than Tm (OTHF) of MBCsalt, which was attributed to a better phase segregation. In addition, the elongation at break of MBCsalt was almost half as high when compared to MBCsran. In this way this study elucidates role of the block length and sequence structure in MBCs and enables a quantitative discussion of the structure-function relationship when two semi-crystalline block segments are utilized for the design of block copolymers. KW - Multiblock copolymers KW - Sequence structure KW - Phase morphology KW - Polymer KW - library KW - Robotic synthesis KW - High-throughput Y1 - 2021 U6 - https://doi.org/10.1016/j.eurpolymj.2020.110207 SN - 0014-3057 SN - 1873-1945 VL - 143 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Machatschek, Rainhard Gabriel A1 - Heuchel, Matthias A1 - Lendlein, Andreas T1 - Hydrolytic stability of polyetherimide investigated in ultrathin films JF - Journal of materials research : JMR / Materials Research Society N2 - Increasing the surface hydrophilicity of polyetherimide (PEI) through partial hydrolysis of the imide groups while maintaining the length of the main-chain was explored for adjusting its function in biomedical and membrane applications. The outcome of the polymer analogous reaction, i.e., the degree of ring opening and chain cleavage, is difficult to address in bulk and microstructured systems, as these changes only occur at the interface. Here, the reaction was studied at the air-water interface using the Langmuir technique, assisted by atomic force microscopy and vibrational spectroscopy. Slow PEI hydrolysis sets in at pH > 12. At pH = 14, the ring opening is nearly instantaneous. Reduction of the layer viscosity with time at pH = 14 suggested moderate chain cleavage. No hydrolysis was observed at pH = 1. Hydrolyzed PEI films had a much more cohesive structure, suggesting that the nanoporous morphology of PEI can be tuned via hydrolysis. KW - 2D materials KW - Membrane KW - Polymer KW - Water KW - Nanostructure Y1 - 2021 U6 - https://doi.org/10.1557/s43578-021-00267-6 SN - 0884-2914 SN - 2044-5326 VL - 36 IS - 14 SP - 2987 EP - 2994 PB - Springer CY - Berlin ER - TY - JOUR A1 - Mazurek-Budzyńska, Magdalena A1 - Behl, Marc A1 - Razzaq, Muhammad Yasar A1 - Nöchel, Ulrich A1 - Rokicki, Gabriel A1 - Lendlein, Andreas T1 - Hydrolytic stability of aliphatic poly(carbonate-urea-urethane)s: Influence of hydrocarbon chain length in soft segment JF - Polymer Degradation and Stability N2 - Poly(carbonate-urethane)s (PCUs) exhibit improved resistance to hydrolytic degradation and in vivo stress cracking compared to poly(ester-urethane)s and their degradation leads to lower inflammation of the surrounding tissues. Therefore, PCUs are promising implant materials and are considered for devices such as artificial heart or spine implants. In this work, the hydrolytic stability of different poly(carbonate-urethane-urea)s (PCUUs) was studied under variation of the length of hydrocarbon chain (6, 9, 10, and 12 methylene units) between the carbonate linkages in the precursors. PCUUs were synthesized from isophorone diisocyanate and oligo(alkylene carbonate) diols using the moisture-cure method. The changes of sample weight, thermal and mechanical properties, morphology, as well as the degradation products after immersion in a buffer solution (PBS, pH = 7.4) for up to 10 weeks at 37 degrees C were monitored and analyzed. In addition, mechanical properties after 20 weeks (in PBS, 37 degrees C) were investigated. The gel content was determined based on swelling experiments in chloroform. Based on the DSC analysis, slight increases of melting transitions of PCUUs were observed, which were attributed to structure reorganization related to annealing at 37 degrees C rather than to the degradation of the PCUU. Tensile strength after 20 weeks of all investigated samples remained in the range of 29-39 MPa, whereas the elongation at break e(m) decreased only slightly and remained in the range between 670 and 800%. Based on the characterization of degradation products after up to 10 weeks of immersion it was assessed that oligomers are mainly consisting of hard segments containing urea linkages, which could be assigned to hindered-urea dissociation mechanism. The investigations confirmed good resistance of PCUUs to hydrolysis. Only minor changes in the crystallinity, as well as thermal and mechanical properties were observed and depended on hydrocarbon chain length in soft segment of PCUUs. (C) 2019 Published by Elsevier Ltd. KW - Poly(carbonate-urea-urethane)s KW - Hydrolytic stability KW - Degradation Y1 - 2019 SN - 0141-3910 SN - 1873-2321 VL - 161 SP - 283 EP - 297 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Balk, Maria A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Hydrolytic Degradation of Actuators Based on Copolymer Networks From Oligo(epsilon-caprolactone) Dimethacrylate and n-Butyl Acrylate JF - MRS advances N2 - Shape-memory polymer actuators often contain crystallizable polyester segments. Here, the influence of accelerated hydrolytic degradation on the actuation performance in copolymer networks based on oligo(epsilon-caprolactone) dimethacrylate (OCL) and n-butyl acrylate is studied The semi-crystalline OCL was utilized as crosslinker with molecular weights of 2.3 and 15.2 kg.mol(-1) (ratio: 1:1 wt%) and n-butyl acrylate (25 wt% relative to OCL content) acted as softening agent creating the polymer main chain segments within the network architecture. The copolymer networks were programmed by 50% elongation and were degraded by means of alkaline hydrolysis utilizing sodium hydroxide solution (pH = 13). Experiments were performed in the range of the broad melting range of the actuators at 40 degrees C. The degradation of test specimen was monitored by the sample mass, which was reduced by 25 wt% within 105 d .45 degradation products, fragments of OCL with molecular masses ranging from 400 to 50.000 g.mol(-1) could be detected by NMR spectroscopy and GPC measurements. The cleavage of ester groups included in OCL segments resulted in a decrease of the melting temperature (T-m) related to the actuator domains (amorphous at the temperature of degradation) and simultaneously, the T-m associated to the skeleton domain was increased (semi-crystalline at the temperature of degradation). The alkaline hydrolysis decreased the polymer chain orientation of OCL domains until a random alignment of crystalline domains was obtained. This result was confirmed by cyclic thermomechanical actuation tests. The performance of directed movements decreased almost linearly as function of degradation time resulting in the loss of functionality when the orientation of polymer chains disappeared. Here, actuators were able to provide reversible movements until 91 d when the accelerated bulk degradation procedure using alkaline hydrolysis (pH = 13) was applied. Accordingly, a lifetime of more than one year can be guaranteed under physiological conditions (pH = 7.4) when, e.g., artificial muscles for biomimetic robots as potential application for these kind of shape-memory polymer actuators will be addressed. Y1 - 2019 U6 - https://doi.org/10.1557/adv.2019.202 SN - 2059-8521 VL - 4 IS - 21 SP - 1193 EP - 1205 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Neffe, Axel T. A1 - Löwenberg, Candy A1 - Lendlein, Andreas T1 - Hydrogel networks by aliphatic dithiol Michael addition to glycidylmethacrylated gelatin JF - MRS advances : a journal of the Materials Research Society (MRS) N2 - Functionalization of gelatin with glycidylmethacrylate (GMA-gelatin) enables network formation employing the double bond, so that the reaction is orthogonal to the inherent functional groups in the biomacromolecule. Here, network formation by crosslinking of GMA-gelatin with hexane 1,6-dithiol or nonane 1,9-dithiol to tailor properties and enable a shape-memory effect is shown by H-1 NMR and FT-IR spectroscopy. Hydrogel swelling (460-1900 vol%) and mechanical properties (Young's modulus E = 59-512 kPa, elongation at break epsilon(b) = 44-127%) depended on the molecular composition of the networks and temperature. Increased crosslinker length, thiol:methacrylate molar ratio, and precursor concentrations led to denser networks. Change of properties with temperature suggested adoption of triple helices by gelatin chains, forming physical netpoints at lower temperatures (< 20 degrees C). However, the limited freedom of the gelatin chains to move allowed only a minimal extent of triple helices formation, as it became apparent from the related signal in wide-angle X-ray scattering and the thermal transition associated to triple helices in some networks by DSC. The presented strategy is likely transferable to other biomacromolecules, and the results suggest that too short crosslinkers may result in a significant amount of grafting rather than network formation. Y1 - 2021 U6 - https://doi.org/10.1557/s43580-021-00136-8 SN - 2059-8521 VL - 6 IS - 33 SP - 796 EP - 800 PB - Springer Nature Switzerland AG CY - Cham ER - TY - JOUR A1 - Tartivel, Lucile A1 - Behl, Marc A1 - Schröter, Michael A1 - Lendlein, Andreas T1 - Hydrogel networks based on ABA triblock copolymers JF - Journal of applied biomaterials & functional materials N2 - Background: Triblock copolymers from hydrophilic oligo(ethylene glycol) segment A and oligo(propylene glycol) segment B, providing an ABA structure (OEG-OPG-OEG triblock), are known to be biocompatible and are used as self-solidifying gels in drug depots. A complete removal of these depots would be helpful in cases of undesired side effects of a drug, but this remains a challenge as they liquefy below their transition temperature. Therefore we describe the synthesis of covalently cross-linked hydrogel networks. Method: Triblock copolymer-based hydrogels were created by irradiating aqueous solutions of the corresponding macro-dimethacrylates with UV light. The degree of swelling, swelling kinetics, mechanical properties and morphology of the networks were investigated. Results: Depending on precursor concentration, equilibrium degree of swelling of the films ranged between 500% and 880% and was reached in 1 hour. In addition, values for storage and loss moduli of the hydrogel networks were in the 100 Pa to 10 kPa range. Conclusion: Although OEG-OPG-OEG triblocks are known for their micellization, which could hamper polymer network formation, reactive OEG-OPG-OEG triblock oligomers could be successfully polymerized into hydrogel networks. The degree of swelling of these hydrogels depends on their molecular weight and on the oligomer concentration used for hydrogel preparation. In combination with the temperature sensitivity of the ABA triblock copolymers, it is assumed that such hydrogels might be beneficial for future medical applications -e.g., removable drug release systems. KW - Hydrogel KW - Rheological characterization KW - Oligo(ethylene glycol) derivatization KW - OEG-OPG-OEG triblock copolymer KW - UV crosslinking Y1 - 2012 U6 - https://doi.org/10.5301/JABFM.2012.10295 SN - 2280-8000 VL - 10 IS - 3 SP - 243 EP - 248 PB - Wichtig CY - Milano ER - TY - JOUR A1 - Piluso, Susanna A1 - Hiebl, Bernhard A1 - Gorb, Stanislav N. A1 - Kovalev, Alexander A1 - Lendlein, Andreas A1 - Neffe, Axel T. T1 - Hyaluronic acid-based hydrogels crosslinked by copper-catalyzed azide-alkyne cycloaddition with tailorable mechanical properties JF - The international journal of artificial organs N2 - Biopolymers of the extracellular matrix are attractive starting materials for providing degradable and biocompatible biomaterials. In this study, hyaluronic acid-based hydrogels with tunable mechanical properties were prepared by the use of copper-catalyzed azide-alkyne cycloaddition (known as "click chemistry"). Alkyne-functionalized hyaluronic acid was crosslinked with linkers having two terminal azide functionalities, varying crosslinker density as well as the lengths and rigidity of the linker molecules. By variation of the crosslinker density and crosslinker type, hydrogels with elastic moduli in the range of 0.5-4 kPa were prepared. The washed materials contained a maximum of 6.8 mg copper per kg dry weight and the eluate of the gel crosslinked with diazidostilbene did not show toxic effects on L929 cells. The hyaluronic acid-based hydrogels have potential as biomaterials for cell culture or soft tissue regeneration applications. KW - Biomaterial KW - Hydrogel KW - Hyaluronic acid KW - Microindentation KW - Rheology Y1 - 2011 U6 - https://doi.org/10.5301/IJAO.2011.6394 SN - 0391-3988 VL - 34 IS - 2 SP - 192 EP - 197 PB - Wichtig CY - Milano ER - TY - JOUR A1 - Neffe, Axel T. A1 - Lendlein, Andreas T1 - Going Beyond Compromises in Multifunctionality of Biomaterials JF - Advanced healthcare materials Y1 - 2015 U6 - https://doi.org/10.1002/adhm.201400724 SN - 2192-2640 SN - 2192-2659 VL - 4 IS - 5 SP - 642 EP - 645 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Behl, Marc A1 - Zhao, Qian A1 - Lendlein, Andreas T1 - Glucose-responsive shape-memory cryogels JF - Journal of materials research : JMR N2 - Boronic ester bonds can be reversibly formed between phenylboronic acid (PBA) and triol moieties. Here, we aim at a glucose-induced shape-memory effect by implementing such bonds as temporary netpoints, which are cleavable by glucose and by minimizing the volume change upon stimulation by a porous cryogel structure. The polymer system consisted of a semi-interpenetrating network (semi-IPN) architecture, in which the triol moieties were part of the permanent network and the PBA moieties were located in the linear polymer diffused into the semi-IPN. In an alkaline medium (pH = 10), the swelling ratio was approximately 35, independent of C-glu varied between 0 and 300 mg/dL. In bending experiments, shape fixity R-f approximate to 80% and shape recovery R-r approximate to 100% from five programming/recovery cycles could be determined. R-r was a function of C-glu in the range from 0 to 300 mg/dL, which accords with the fluctuation range of C-glu in human blood. In this way, the shape-memory hydrogels could play a role in future diabetes treatment options. KW - shape memory KW - polymer KW - porosity Y1 - 2020 U6 - https://doi.org/10.1557/jmr.2020.204 SN - 0884-2914 SN - 2044-5326 VL - 35 IS - 18 SP - 2396 EP - 2404 PB - Springer CY - Berlin ER - TY - JOUR A1 - Xu, Xun A1 - Nie, Yan A1 - Wang, Weiwei A1 - Ullah, Imran A1 - Tung, Wing Tai A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Generation of 2.5D lung bud organoids from human induced pluripotent stem cells JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Human induced pluripotent stem cells (hiPSCs) are a promising cell source to generate the patient-specific lung organoid given their superior differentiation potential. However, the current 3D cell culture approach is tedious and time-consuming with a low success rate and high batch-to-batch variability. Here, we explored the establishment of lung bud organoids by systematically adjusting the initial confluence levels and homogeneity of cell distribution. The efficiency of single cell seeding and clump seeding was compared. Instead of the traditional 3D culture, we established a 2.5D organoid culture to enable the direct monitoring of the internal structure via microscopy. It was found that the cell confluence and distribution prior to induction were two key parameters, which strongly affected hiPSC differentiation trajectories. Lung bud organoids with positive expression of NKX 2.1, in a single-cell seeding group with homogeneously distributed hiPSCs at 70% confluence (SC 70% hom) or a clump seeding group with heterogeneously distributed cells at 90% confluence (CL 90% het), can be observed as early as 9 days post induction. These results suggest that a successful lung bud organoid formation with single-cell seeding of hiPSCs requires a moderate confluence and homogeneous distribution of cells, while high confluence would be a prominent factor to promote the lung organoid formation when seeding hiPSCs as clumps. 2.5D organoids generated with defined culture conditions could become a simple, efficient, and valuable tool facilitating drug screening, disease modeling and personalized medicine. KW - lung organoid KW - human induced pluripotent stem cell KW - cell culture Y1 - 2021 U6 - https://doi.org/10.3233/CH-219111 SN - 1386-0291 SN - 1875-8622 VL - 79 IS - 1 SP - 217 EP - 230 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Neffe, Axel T. A1 - Loebus, Axel A1 - Zaupa, Alessandro A1 - Stötzel, Christian A1 - Müller, Frank A. A1 - Lendlein, Andreas T1 - Gelatin functionalization with tyrosine derived moieties to increase the interaction with hydroxyapatite fillers JF - Acta biomaterialia N2 - Combining gelatins functionalized with the tyrosine-derived groups desaminotyrosine or desaminotyrosyl tyrosine with hydroxyapatite (HAp) led to the formation of composite materials with much lower swelling ratios than those of the pure matrices. Shifts of the infra-red (IR) bands related to the free carboxyl groups could be observed in the presence of HAp, which suggested a direct interaction of matrix and filler that formed additional physical cross-links in the material. In tensile tests and rheological measurements the composites equilibrated in water had increased Young's moduli (from 200 kPa up to 2 MPa) and tensile strengths (from 57 kPa up to 1.1 MPa) compared with the matrix polymers without affecting the elongation at break. Furthermore, an increased thermal stability of the networks from 40 to 85 degrees C could be demonstrated. The differences in the behaviour of the functionalized gelatins compared with pure gelatin as a matrix suggested an additional stabilizing bond between the incorporated aromatic groups and the HAp as supported by the IR results. The composites can potentially be applied as bone fillers. KW - Gelatin KW - Hydroxyapatite KW - Composite KW - Hydrogel KW - Biomaterial Y1 - 2011 U6 - https://doi.org/10.1016/j.actbio.2010.11.025 SN - 1742-7061 VL - 7 IS - 4 SP - 1693 EP - 1701 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Machatschek, Rainhard Gabriel A1 - Lendlein, Andreas T1 - Fundamental insights in PLGA degradation from thin film studies JF - Journal of controlled release : official journal of the Controlled Release Society and of the Japanese Society of Drug Delivery Systems N2 - Poly(lactide-co-glycolide)s are commercially available degradable implant materials, which are typically selected based on specifications given by the manufacturer, one of which is their molecular weight. Here, we address the question whether variations in the chain length and their distribution affect the degradation behavior of Poly[(rac-lactide)-co-glycolide]s (PDLLGA). The hydrolysis was studied in ultrathin films at the air-water interface in order to rule out any morphological effects. We found that both for purely hydrolytic degradation as well as under enzymatic catalysis, the molecular weight has very little effect on the overall degradation kinetics of PDLLGAs. The quantitative analysis suggested a random scission mechanism. The monolayer experiments showed that an acidic micro-pH does not accelerate the degradation of PDLLGAs, in contrast to alkaline conditions. The degradation experiments were combined with interfacial rheology measurements, which showed a drastic decrease of the viscosity at little mass loss. The extrapolated molecular weight behaved similar to the viscosity, dropping to a value near to the solubility limit of PDLLGA oligomers before mass loss set in. This observation suggests a solubility controlled degradation of PDLLGA. Conclusively, the molecular weight affects the degradation of PDLLGA devices mostly in indirect ways, e.g. by determining their morphology and porosity during fabrication. Our study demonstrates the relevance of the presented Langmuir degradation method for the design of controlled release systems. KW - PDLLGA KW - Degradation KW - Langmuir monolayer Y1 - 2019 U6 - https://doi.org/10.1016/j.jconrel.2019.12.044 SN - 0168-3659 SN - 1873-4995 VL - 319 SP - 276 EP - 284 PB - Elsevier CY - New York ER - TY - JOUR A1 - Sauter, Tilman A1 - Kratz, Karl A1 - Heuchel, Matthias A1 - Lendlein, Andreas T1 - Fiber diameter as design parameter for tailoring the macroscopic shape-memory performance of electrospun meshes JF - Materials and design N2 - Fibrous shape-memory polymer (SMP) scaffolds were investigated considering the fiber as basic microstructural feature. By reduction of the fiber diameter in randomly oriented electrospun polyetherurethane (PEU) meshes from the micro-to the nano-scale, we observed changes in the molecular orientation within the fibers and its impact on the structural and shape-memory performance. It was assumed that a spatial restriction by reduction of the fiber diameter increases molecular orientation along the orientation of the fiber. The stress-strain relation of random PEU scaffolds is initially determined by the 3D arrangement of the fibers and thus is independent of the molecular orientation. Increasing the molecular orientation with decreasing single fiber diameter in scaffolds composed of randomly arranged fibers did not alter the initial stiffness and peak stress but strongly influenced the elongation at break and the stress increase above the Yield point. Reduction of the single fiber diameter also distinctly improved the shape-memory performance of the scaffolds. Fibers with nanoscale diameters (< 100 nm) possessed an almost complete shape recovery, high recovery stresses and fast relaxation kinetics, while the shape fixity was found to decrease with decreasing fiber diameter. Hence, the fiber diameter is a relevant design parameter for SMP. KW - Nanofiber KW - Shape-memory polymer KW - Electrospinning KW - Function by design KW - Molecular orientation Y1 - 2021 U6 - https://doi.org/10.1016/j.matdes.2021.109546 SN - 1873-4197 VL - 202 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Farhan, Muhammad A1 - Rudolph, Tobias A1 - Nöchel, Ulrich A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Extractable Free Polymer Chains Enhance Actuation Performance of Crystallizable Poly(epsilon-caprolactone) Networks and Enable Self-Healing JF - Polymers N2 - Crosslinking of thermoplastics is a versatile method to create crystallizable polymer networks, which are of high interest for shape-memory actuators. Here, crosslinked poly(epsilon-caprolactone) thermosets (cPCLs) were prepared from linear starting material, whereby the amount of extractable polymer was varied. Fractions of 5-60 wt % of non-crosslinked polymer chains, which freely interpenetrate the crosslinked network, were achieved leading to differences in the resulting phase of the bulk material. This can be described as "sponge-like" with open or closed compartments depending on the amount of interpenetrating polymer. The crosslinking density and the average network chain length remained in a similar range for all network structures, while the theoretical accessible volume for reptation of the free polymer content is affected. This feature could influence or introduce new functions into the material created by thermomechanical treatment. The effect of interpenetrating PCL in cPCLs on the reversible actuation was analyzed by cyclic, uniaxial tensile tests. Here, high reversible strains of up to Delta epsilon = 24% showed the enhanced actuation performance of networks with a non-crosslinked PCL content of 30 wt % resulting from the crystal formation in the phase of the non-crosslinked PCL and co-crystallization with network structures. Additional functionalities are reprogrammability and self-healing capabilities for networks with high contents of extractable polymer enabling reusability and providing durable actuator materials. KW - shape-memory polymer actuators KW - soft actuators KW - self-healing KW - poly(epsilon-caprolactone) KW - thermoplastics Y1 - 2018 U6 - https://doi.org/10.3390/polym10030255 SN - 2073-4360 VL - 10 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Neffe, Axel T. A1 - Zhang, Quanchao A1 - Hommes-Schattmann, Paul J. A1 - Lendlein, Andreas T1 - Ethylene oxide sterilization of electrospun poly(L-lactide)/poly(D-lactide) core/shell nanofibers JF - MRS advances N2 - The application of polymers in medicine requires sterilization while retaining material structure and properties. This demands detailed analysis, which we show exemplarily for the sterilization of PLLA/PDLA core-shell nanofibers with ethylene oxide (EtO). The electrospun patch was exposed to EtO gas (6 vol% in CO2, 1.7 bar) for 3 h at 45 degrees C and 75% rel. humidity, followed by degassing under pressure/vacuum cycles for 12 h. GC-MS analysis showed that no residual EtO was retained. Fiber diameters (similar to 520 +/- 130 nm) of the patches remained constant as observed by electron microscopy. Young's modulus slightly increased and the elongation at break slightly decreased, determined at 37 degrees C. No changes were detected in H-1-NMR spectra, in molar mass distribution (GPC) or in crystallinity measured for annealed samples with comparable thermal history (Wide Angle X-Ray Scattering). Altogether, EtO emerged as suitable sterilization method for polylactide nanofibers with core-shell morphology. Y1 - 2021 U6 - https://doi.org/10.1557/s43580-021-00058-5 SN - 2059-8521 VL - 6 IS - 33 SP - 786 EP - 789 PB - Springer CY - Cham ER - TY - JOUR A1 - Lau, Skadi A1 - Liu, Yue A1 - Maier, Anna A1 - Braune, Steffen A1 - Gossen, Manfred A1 - Neffe, Axel T. A1 - Lendlein, Andreas T1 - Establishment of an in vitro thrombogenicity test system with cyclic olefin copolymer substrate for endothelial layer formation JF - MRS communications / a publication of the Materials Research Society N2 - In vitro thrombogenicity test systems require co-cultivation of endothelial cells and platelets under blood flow-like conditions. Here, a commercially available perfusion system is explored using plasma-treated cyclic olefin copolymer (COC) as a substrate for the endothelial cell layer. COC was characterized prior to endothelialization and co-cultivation with platelets under static or flow conditions. COC exhibits a low roughness and a moderate hydrophilicity. Flow promoted endothelial cell growth and prevented platelet adherence. These findings show the suitability of COC as substrate and the importance of blood flow-like conditions for the assessment of the thrombogenic risk of drugs or cardiovascular implant materials. Y1 - 2021 U6 - https://doi.org/10.1557/s43579-021-00072-6 SN - 2159-6867 VL - 11 IS - 5 SP - 559 EP - 567 PB - Springer CY - Berlin ER - TY - JOUR A1 - Balk, Maria A1 - Behl, Marc A1 - Nöchel, Ulrich A1 - Lendlein, Andreas T1 - Enzymatically triggered Jack-in-the-box-like hydrogels JF - ACS applied materials & interfaces / American Chemical Society N2 - Enzymes can support the synthesis or degradation of biomacromolecules in natural processes. Here, we demonstrate that enzymes can induce a macroscopic-directed movement of microstructured hydrogels following a mechanism that we call a "Jack-in-the-box" effect. The material's design is based on the formation of internal stresses induced by a deformation load on an architectured microscale, which are kinetically frozen by the generation of polyester locking domains, similar to a Jack-in-thebox toy (i.e., a compressed spring stabilized by a closed box lid). To induce the controlled macroscopic movement, the locking domains are equipped with enzyme-specific cleavable bonds (i.e., a box with a lock and key system). As a result of enzymatic reaction, a transformed shape is achieved by the release of internal stresses. There is an increase in entropy in combination with a swelling-supported stretching of polymer chains within the microarchitectured hydrogel (i.e., the encased clown pops-up with a pre-stressed movement when the box is unlocked). This utilization of an enzyme as a physiological stimulus may offer new approaches to create interactive and enzyme-specific materials for different applications such as an optical indicator of the enzyme's presence or actuators and sensors in biotechnology and in fermentation processes. KW - enzyme KW - hydrogels KW - stimuli-sensitive materials KW - shape change KW - poly(e-caprolactone) KW - switch KW - microporous Y1 - 2021 U6 - https://doi.org/10.1021/acsami.1c00466 SN - 1944-8244 SN - 1944-8252 VL - 13 IS - 7 SP - 8095 EP - 8101 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Rossberg, Joana A1 - Rottke, Falko O. A1 - Schulz, Burkhard A1 - Lendlein, Andreas T1 - Enzymatic Degradation of Oligo(epsilon-caprolactone)s End-Capped with Phenylboronic Acid Derivatives at the Air-Water Interface JF - Macromolecular rapid communications N2 - The influence of terminal functionalization of oligo(epsilon-caprolactone)s (OCL) with phenylboronic acid pinacol ester or phenylboronic acid on the enzymatic degradation behavior at the air-water interface is investigated by the Langmuir monolayer degradation technique. While the unsubstituted OCL immediately degrades after injection of the enzyme lipase from Pseudomonas cepacia, enzyme molecules are incorporated into the films based on end-capped OCL before degradation. This incorporation of enzymes does not inhibit or suppress the film degradation, but retards it significantly. A specific binding of lipase to the polymer monolayer allows studying the enzymatic activity of bound proteins and the influence on the degradation process. The functionalization of a macromolecule with phenyl boronic acid groups is an approach to investigate their interactions with diol-containing biomolecules like sugars and to monitor their specified impact on the enzymatic degradation behavior at the air-water interface. Y1 - 2016 U6 - https://doi.org/10.1002/marc.201600471 SN - 1022-1336 SN - 1521-3927 VL - 37 SP - 1966 EP - 1971 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Piluso, Susanna A1 - Lendlein, Andreas A1 - Neffe, Axel T. T1 - Enzymatic action as switch of bulk to surface degradation of clicked gelatin-based networks JF - Polymers for advanced technologies N2 - Polymer degradation occurs under physiological conditions in vitro and in vivo, especially when bonds susceptible to hydrolysis are present in the polymer. Understanding of the degradation mechanism, changes of material properties over time, and overall rate of degradation is a necessary prerequisite for the knowledge-based design of polymers with applications in biomedicine. Here, hydrolytic degradation studies of gelatin-based networks synthesized by copper-catalyzed azide-alkyne cycloaddition reaction are reported, which were performed with or without addition of an enzyme. In all cases, networks with a stilbene as crosslinker proofed to be more resistant to degradation than when an octyl diazide was used. Without addition of an enzyme, the rate of degradation was ruled by the crosslinking density of the network and proceeded via a bulk degradation mechanism. Addition of Clostridium histolyticum collagenase resulted in a much enhanced rate of degradation, which furthermore occurred via surface erosion. The mesh size of the hydrogels (>7nm) was in all cases larger than the hydrodynamic radius of the enzyme (4.5nm) so that even in very hydrophilic networks with large mesh size enzymes may be used to induce a fast surface degradation mechanism. This observation is of general interest when designing hydrogels to be applied in the presence of enzymes, as the degradation mechanism and material performance are closely interlinked. Copyright (c) 2016 John Wiley & Sons, Ltd. KW - Hydrogel KW - Biopolymer KW - Degradation Y1 - 2017 U6 - https://doi.org/10.1002/pat.3962 SN - 1042-7147 SN - 1099-1581 VL - 28 SP - 1318 EP - 1324 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Nie, Yan A1 - Wang, Weiwei A1 - Xu, Xun A1 - Zou, Jie A1 - Bhuvanesh, Thanga A1 - Schulz, Burkhard A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Enhancement of human induced pluripotent stem cells adhesion through multilayer laminin coating JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Bioengineered cell substrates are a highly promising tool to govern the differentiation of stem cells in vitro and to modulate the cellular behavior in vivo. While this technology works fine for adult stem cells, the cultivation of human induced pluripotent stem cells (hiPSCs) is challenging as these cells typically show poor attachment on the bioengineered substrates, which among other effects causes substantial cell death. Thus, very limited types of surfaces have been demonstrated suitable for hiPSC cultures. The multilayer coating approach that renders the surface with diverse chemical compositions, architectures, and functions can be used to improve the adhesion of hiPSCs on the bioengineered substrates. We hypothesized that a multilayer formation based on the attraction of molecules with opposite charges could functionalize the polystyrene (PS) substrates to improve the adhesion of hiPSCs. Polymeric substrates were stepwise coated, first with dopamine to form a polydopamine (PDA) layer, second with polylysine and last with Laminin-521. The multilayer formation resulted in the variation of hydrophilicity and chemical functionality of the surfaces. Hydrophilicity was detected using captive bubble method and the amount of primary and secondary amines on the surface was quantified by fluorescent staining. The PDA layer effectively immobilized the upper layers and thereby improved the attachment of hiPSCs. Cell adhesion was enhanced on the surfaces coated with multilayers, as compared to those without PDA and/or polylysine. Moreover, hiPSCs spread well over this multilayer laminin substrate. These cells maintained their proliferation capacity and differentiation potential. The multilayer coating strategy is a promising attempt for engineering polymer-based substrates for the cultivation of hiPSCs and of interest for expanding the application scope of hiPSCs. KW - Polymeric substrate KW - surface coating KW - induced pluripotent stem cells KW - cell adhesion Y1 - 2019 U6 - https://doi.org/10.3233/CH-189318 SN - 1386-0291 SN - 1875-8622 VL - 70 IS - 4 SP - 531 EP - 542 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Krüger-Genge, Anne A1 - Dietze, Stefanie A1 - Yan, Wan A1 - Liu, Yue A1 - Fang, Liang A1 - Kratz, Karl A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Endothelial cell migration, adhesion and proliferation on different polymeric substrates JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - BACKGROUND: The formation of a functionally-confluent endothelial cell (EC) monolayer affords proliferation of EC, which only happens in case of appropriate migratory activity. AIM OF THE STUDY: The migratory pathway of human umbilical endothelial cells (HUVEC) was investigated on different polymeric substrates. MATERIAL AND METHODS: Surface characterization of the polymers was performed by contact angle measurements and atomic force microscopy under wet conditions. 30,000 HUVEC per well were seeded on polytetrafluoroethylene (PTFE) (theta(adv) = 119 degrees +/- 2 degrees), on low-attachment plate LAP (theta(adv) = 28 degrees +/- 2 degrees) and on polystyrene based tissue culture plates (TCP, theta(adv) = 22 degrees +/- 1 degrees). HUVEC tracks (trajectories) were recorded by time lapse microscopy and the euclidean distance (straight line between starting and end point), the total distance and the velocities of HUVEC not leaving the vision field were determined. RESULTS: On PTFE, 42 HUVEC were in the vision field directly after seeding. The mean length of single migration steps (SML) was 6.1 +/- 5.2 mu m, the mean velocity (MV) 0.40 +/- 0.3 mu m.min(-1) and the complete length of the trajectory (LT) was 710 +/- 440 mu m. On TCP 82 HUVEC were in the vision field subsequent to seeding. The LT was 840 +/- 550 mu m, the SML 6.1 +/- 5.2 mu m and the MV 0.44 +/- 0.3 mu m.min(-1). The trajectories on LAP differed significantly in respect to SML (2.4 +/- 3.9 mu m, p <0.05), the MV (0.16 +/- 0.3 mu m.min(-1), p <0.05) and the LT (410 +/- 300 mu m, p <0.05), compared to PTFE and TCP. Solely on TCP a nearly confluent EC monolayer developed after three days. While on TCP diffuse signals of vinculin were found over the whole basal cell surface organizing the binding of the cells by focal adhesions, on PTFE vinculin was merely arranged at the cell rims, and on the hydrophilic material (LAP) no focal adhesions were found. CONCLUSION: The study revealed that the wettability of polymers affected not only the initial adherence but also the migration of EC, which is of importance for the proliferation and ultimately the endothelialization of polymer-based biomaterials. KW - Endothelial cells KW - migration KW - polymer-based biomaterials KW - cytokine release Y1 - 2019 U6 - https://doi.org/10.3233/CH-189317 SN - 1386-0291 SN - 1875-8622 VL - 70 IS - 4 SP - 511 EP - 529 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Sauter, Tilman A1 - Geiger, Brett A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Encasement of metallic cardiovascular stents with endothelial cell-selective copolyetheresterurethane microfibers JF - Polymers for advanced technologies N2 - Cardiovascular metallic stents established in clinical application are typically coated by a thin polymeric layer on the stent struts to improve hemocompatibility, whereby often a drug is added to the coating to inhibit neointimal hyperplasia. Besides such thin film coatings recently nano/microfiber coated stents are investigated, whereby the fibrous coating was applied circumferential on stents. Here, we explored whether a thin fibrous encasement of metallic stents with preferentially longitudinal aligned fibers and different local fiber densities can be achieved by electrospinning. An elastic degradable copolyetheresterurethane, which is reported to selectively enhance the adhesion of endothelial cells, while simultaneously rejecting smooth muscle cells, was utilized for stent coating. The fibrous stent encasements were microscopically assessed regarding their single fiber diameters, fiber covered area and fiber alignment at three characteristic stent regions before and after stent expansion. Stent coatings with thicknesses in the range from 30 to 50 mu m were achieved via electrospinning with 1,1,1,3,3,3-hexafluoro-2-propanol (HFP)-based polymer solution, while a mixture of HFP and formic acid as solvent resulted in encasements with a thickness below 5 mu m comprising submicron sized single fibers. All polymeric encasements were mechanically stable during expansion, whereby the fibers deposited on the struts remained their position. The observed changes in fiber density and diameter indicated diverse local deformation mechanisms of the microfibers at the different regions between the struts. Based on these results it can be anticipated that the presented fibrous encasement of stents might be a promising alternative to stents with polymeric strut coatings releasing anti-proliferative drugs. Copyright (c) 2015 John Wiley & Sons, Ltd. KW - multifunctional polymers KW - stent coatings KW - electrospinning KW - biomaterials KW - degradable polymers Y1 - 2015 U6 - https://doi.org/10.1002/pat.3583 SN - 1042-7147 SN - 1099-1581 VL - 26 IS - 10 SP - 1209 EP - 1216 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Farhan, Muhammad A1 - Chaudhary, Deeptangshu A1 - Nöchel, Ulrich A1 - Behl, Marc A1 - Kratz, Karl A1 - Lendlein, Andreas T1 - Electrical actuation of coated and composite fibers based on poly[ethylene-co-(vinyl acetate)] JF - Macromolecular materials and engineering N2 - Robots are typically controlled by electrical signals. Resistive heating is an option to electrically trigger actuation in thermosensitive polymer systems. In this study electrically triggerable poly[ethylene-co-(vinyl acetate)] (PEVA)-based fiber actuators are realized as composite fibers as well as polymer fibers with conductive coatings. In the coated fibers, the core consists of crosslinked PEVA (cPEVA), while the conductive coating shell is achieved via a dip coating procedure with a coating thickness between 10 and 140 mu m. The conductivity of coated fibers sigma = 300-550 S m(-1) is much higher than that of the composite fibers sigma = 5.5 S m(-1). A voltage (U) of 110 V is required to heat 30 cm of coated fiber to a targeted temperature of approximate to 65 degrees C for switching in less than a minute. Cyclic electrical actuation investigations reveal epsilon '(rev) = 5 +/- 1% reversible change in length for coated fibers. The fabrication of such electro-conductive polymeric actuators is suitable for upscaling so that their application potential as artificial muscles can be explored in future studies. KW - artificial muscles KW - fiber actuators KW - resistive heating KW - shape‐memory polymer actuators KW - soft robotics Y1 - 2020 U6 - https://doi.org/10.1002/mame.202000579 SN - 1438-7492 SN - 1439-2054 VL - 306 IS - 2 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Kumar, Reddi K. A1 - Heuchel, Matthias A1 - Kratz, Karl A1 - Lendlein, Andreas A1 - Jankowski, Joachim A1 - Tetali, Sarada D. T1 - Effects of extracts prepared from modified porous poly(ether imide) microparticulate absorbers on cytotoxicity, macrophage differentiation and proinflammatory behavior of human monocytic (THP-1) cells JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Remaining uremic toxins in the blood of chronic renal failure patients represent one central challenge in hemodialysis therapies. Highly porous poly(ether imide) (PEI) microparticles have been recently introduced as candidate absorber materials, which show a high absorption capacity for uremic toxins and allow hydrophilic surface modification suitable for minimization of serum protein absorption. In this work, the effects of extracts prepared from PEI microparticles modified by nucleophilic reaction with low molecular weight polyethylene imine (Pei) or potassium hydroxide (KOH), on human monocytic (THP-1) cells are studied. The obtained results suggested that the extracts of Pei and KOH modified PEI absorbers have no negative effect on THP-1 cell viability and do not initiate the critical differentiation towards macrophages. The extracts did not enhance transcript or protein levels of investigated proinflammatory markers in THP-1 cells, namely, TNF alpha, MCP1, IL6 and IL8. Based on these findings such modified PEI microparticles should be qualified for further pre-clinical evaluation i.e. in an in vivo animal experiment. KW - Chronic kidney disease KW - hemodialysis KW - Inflammation KW - Porous poly(ether imide) microparticulate absorbers KW - THP-1 cells KW - Uremic toxins Y1 - 2018 U6 - https://doi.org/10.3233/CH-189112 SN - 1386-0291 SN - 1875-8622 VL - 69 IS - 1-2 SP - 175 EP - 185 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Braune, Steffen A1 - Froehlich, G. M. A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Effect of temperature on platelet adherence JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - BACKGROUND: Thrombogenicity is one of the main parameters tested in vitro to evaluate the hemocompatibility of artificial surfaces. While the influence of the temperature on platelet aggregation has been addressed by several studies, the temperature influence on the adherence of platelets to body foreign surfaces as an important aspect of biomedical device handling has not yet been explored. Therefore, we analyzed the influence of two typically applied incubation-temperatures (22 degrees C and 37 degrees C) on the adhesion of platelets to biomaterials. MATERIAL AND METHODS: Thrombogenicity of three different polymers - medical grade poly(dimethyl siloxane) (PDMS), polytetrafluoroethylene (PTFE) and polyethylene terephthalate (PET) - were studied in an in vitro static test. Platelet adhesion was studied with stringently characterized blood from apparently healthy subjects. Collection of whole blood and preparation of platelet rich plasma (PRP) was carried out at room temperature (22 degrees C). PRP was incubated with the polymers either at 22 degrees C or 37 degrees C. Surface adherent platelets were fixed, fluorescently labelled and assessed by an image-based approach. RESULTS AND DISCUSSION: Differences in the density of adherent platelets after incubation at 22 degrees C and 37 degrees C occurred on PDMS and PET. Similar levels of adherent platelets were observed on the very thrombogenic PTFE. The covered surface areas per single platelet were analyzed to measure the state of platelet activation and revealed no differences between the two incubation temperatures for any of the analyzed polymers. Irrespective of the observed differences between the low and medium thrombogenic PDMS and PET and the higher variability at 22 degrees C, the thrombogenicity of the three investigated polymers was evaluated being comparable at both incubation temperatures. KW - Biomaterial KW - thrombogenicity KW - platelet adhesion KW - platelet activation KW - temperature Y1 - 2016 U6 - https://doi.org/10.3233/CH-152028 SN - 1386-0291 SN - 1875-8622 VL - 61 SP - 681 EP - 688 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Kumar, Reddi K. A1 - Basu, Sayantani A1 - Lemke, Horst-Dieter A1 - Jankowski, Joachim A1 - Kratz, Karl A1 - Lendlein, Andreas A1 - Tetali, Sarada D. T1 - Effect of extracts of poly(ether imide) microparticles on cytotoxicity, ROS generation and proinflammatory effects on human monocytic (THP-1) cells JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - A high cell viability of around 99 +/- 18% and 99 +/- 5% was observed when THP-1 cells were cultured in the presence of aqueous extracts of the PEI microparticles in medium A and medium B respectively. The obtained microscopic data suggested that PEI particle extracts have no significant effect on cell death, oxidative stress or differentiation to macrophages. It was further found that the investigated proinflammatory markers in THP-1 cells were not up-regulated. These results are promising with regard to the biocompatibility of PEI microparticles and in a next step the hemocompatibility of the microparticles will be examined. KW - Chronic kidney disease (CKD) KW - cytotoxicity KW - human monocytic (THP-1) cells KW - poly(ether imide) microparticles KW - reactive oxygen species (ROS) Y1 - 2016 U6 - https://doi.org/10.3233/CH-152027 SN - 1386-0291 SN - 1875-8622 VL - 61 SP - 667 EP - 680 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Lau, Skadi A1 - Maier, Anna A1 - Braune, Steffen A1 - Gossen, Manfred A1 - Lendlein, Andreas T1 - Effect of endothelial culture medium composition on platelet responses to polymeric biomaterials JF - International journal of molecular sciences N2 - Near-physiological in vitro thrombogenicity test systems for the evaluation of blood-contacting endothelialized biomaterials requires co-cultivation with platelets (PLT). However, the addition of PLT has led to unphysiological endothelial cell (EC) detachment in such in vitro systems. A possible cause for this phenomenon may be PLT activation triggered by the applied endothelial cell medium, which typically consists of basal medium (BM) and nine different supplements. To verify this hypothesis, the influence of BM and its supplements was systematically analyzed regarding PLT responses. For this, human platelet rich plasma (PRP) was mixed with BM, BM containing one of nine supplements, or with BM containing all supplements together. PLT adherence analysis was carried out in six-channel slides with plasma-treated cyclic olefin copolymer (COC) and poly(tetrafluoro ethylene) (PTFE, as a positive control) substrates as part of the six-channel slides in the absence of EC and under static conditions. PLT activation and aggregation were analyzed using light transmission aggregometry and flow cytometry (CD62P). Medium supplements had no effect on PLT activation and aggregation. In contrast, supplements differentially affected PLT adherence, however, in a polymer- and donor-dependent manner. Thus, the use of standard endothelial growth medium (BM + all supplements) maintains functionality of PLT under EC compatible conditions without masking the differences of PLT adherence on different polymeric substrates. These findings are important prerequisites for the establishment of a near-physiological in vitro thrombogenicity test system assessing polymer-based cardiovascular implant materials in contact with EC and PLT. KW - cyclic olefin copolymer KW - poly(tetrafluoroethylene) KW - endothelial cells KW - platelets KW - in vitro thrombogenicity testing Y1 - 2021 U6 - https://doi.org/10.3390/ijms22137006 SN - 1422-0067 SN - 1661-6596 VL - 22 IS - 13 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Liang, Xiao A1 - Behl, Marc A1 - Lendlein, Andreas T1 - Dihydroxy terminated teroligomers from morpholine-2,5-diones JF - European polymer journal : EPJ N2 - Oligodepsipeptides (ODPs) attract increasing attention as degradable materials in controlled drug delivery or as building blocks for nano-carriers. Their strong intermolecular interactions provide high stability. Tailoring the side groups of the amino acid repeating units to achieve a strong affinity to particular drugs allows a high drug-loading capacity. Here we describe synthesis and characterization of dihydroxy terminated teroligodepsipeptides (ter-ODPs) by ring-opening copolymerization (ROP) of three different morpholine-2,5-diones (MDs) in bulk in order to provide a set of teroligomers with structural variation for drug release or transfection. Ter-ODPs with equivalent co-monomer feed ratios were prepared as well as ter-ODPs, in which the co-monomer feed ratio was varied between 9 mol% and 78 mol%. Ter-ODPs were synthesized by ROP using 1,1,10,10-tetra-n-butyl-1,10-distanna-2,9,11,18-tetraoxa-5,6,14,15-tetrasulfur-cyclodecane (tin(IV) alkoxide) that was obtained by the reaction of dibutyl tin(II) oxide with 2-hydroxyethyl disulfide. The number average molecular weight (M-n) of ter-ODPs, determined by H-1 NMR and gel permeation chromatography (GPC), ranged between 4000 g center dot mol(-1) and 8600 g center dot mol(-1). Co-monomer compositions in ter-ODPs could be controlled by changing the feed ratio of co-monomers as observed by H-1 NMR spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The amount of remaining monomers as determined by H-1 NMR could be kept below 1 wt%. Macrocycles as main sources of byproducts as determined from MALDI-TOF-MS measurements were significantly lower as compared to polymerization by Sn(Oct)(2). Glass-transition temperature (T-g) of ter-ODPs ranged between 59 degrees C and 70 degrees C. KW - Ring-opening polymerization KW - Tin octanoate KW - Morpholindione KW - Depsipeptide KW - Random copolymer KW - Telechel Y1 - 2021 U6 - https://doi.org/10.1016/j.eurpolymj.2020.110189 SN - 0014-3057 VL - 143 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Lau, Skadi A1 - Gossen, Manfred A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Differential sensitivity of assays for determining vein endothelial cell senescence JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - In vivo endothelialization of polymer-based cardiovascular implant materials is a promising strategy to reduce the risk of platelet adherence and the subsequent thrombus formation and implant failure. However, endothelial cells from elderly patients are likely to exhibit a senescent phenotype that may counteract endothelialization. The senescence status of cells should therefore be investigated prior to implantation of devices designed to be integrated in the blood vessel wall. Here, human umbilical vein endothelial cells (HUVEC) were cultivated up to passage (P) 4, 10 and 26/27 to determine the population doubling time and the senescence status by four different methods. Determination of the senescence-associated beta-galactosidase activity (SA-beta-Gal) was carried out by colorimetric staining and microscopy (i), as well as by photometric quantification (ii), and the expression of senescence-associated nuclear proteins p16 and p21 as well as the proliferation marker Ki67 was assessed by immunostaining (iii), and by flow cytometry (iv). The population doubling time of P27-cells was remarkably greater (103 +/- 65 h) compared to P4-cells (24 +/- 3 h) and P10-cell (37 +/- 15 h). Among the four different methods tested, the photometric SA-beta-Gal activity assay and the flow cytometric determination of p16 and Ki67 were most effective in discriminating P27-cells from P4- and P10-cells. These methods combined with functional endothelial cell analyses might aid predictions on the performance of implant endothelialization in vivo. KW - Ageing KW - population doubling time KW - senescence-associated KW - beta-galactosidase KW - cell cycle inhibitors KW - p16 KW - p21 KW - Ki67 Y1 - 2022 U6 - https://doi.org/10.3233/CH-211294 SN - 1386-0291 SN - 1875-8622 VL - 81 IS - 3 SP - 191 EP - 203 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Lau, Skadi A1 - Gossen, Manfred A1 - Lendlein, Andreas T1 - Designing cardiovascular implants taking in view the endothelial basement membrane JF - International journal of molecular sciences N2 - Insufficient endothelialization of cardiovascular grafts is a major hurdle in vascular surgery and regenerative medicine, bearing a risk for early graft thrombosis. Neither of the numerous strategies pursued to solve these problems were conclusive. Endothelialization is regulated by the endothelial basement membrane (EBM), a highly specialized part of the vascular extracellular matrix. Thus, a detailed understanding of the structure-function interrelations of the EBM components is fundamental for designing biomimetic materials aiming to mimic EBM functions. In this review, a detailed description of the structure and functions of the EBM are provided, including the luminal and abluminal interactions with adjacent cell types, such as vascular smooth muscle cells. Moreover, in vivo as well as in vitro strategies to build or renew EBM are summarized and critically discussed. The spectrum of methods includes vessel decellularization and implant biofunctionalization strategies as well as tissue engineering-based approaches and bioprinting. Finally, the limitations of these methods are highlighted, and future directions are suggested to help improve future design strategies for EBM-inspired materials in the cardiovascular field. KW - endothelial cells KW - bioinstructive implants KW - vascular grafts KW - tissue KW - engineering KW - bioprinting KW - bioinspired materials KW - biological membrane KW - endothelial basement membrane KW - biomaterial Y1 - 2021 U6 - https://doi.org/10.3390/ijms222313120 SN - 1422-0067 VL - 22 IS - 23 PB - MDPI CY - Basel ER - TY - JOUR A1 - Bochove, Bas van A1 - Grijpma, Dirk W. A1 - Lendlein, Andreas A1 - Seppälä, Jukka T1 - Designing advanced functional polymers for medicine JF - European polymer journal : EPJ Y1 - 2021 U6 - https://doi.org/10.1016/j.eurpolymj.2021.110573 SN - 0014-3057 VL - 155 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Federico, Stefania A1 - Pierce, Benjamin F. A1 - Piluso, Susanna A1 - Wischke, Christian A1 - Lendlein, Andreas A1 - Neffe, Axel T. T1 - Design of Decorin-Based Peptides That Bind to CollagenI and their Potential as Adhesion Moieties in Biomaterials JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - Mimicking the binding epitopes of protein-protein interactions by using small peptides is important for generating modular biomimetic systems. A strategy is described for the design of such bioactive peptides without accessible structural data for the targeted interaction, and the effect of incorporating such adhesion peptides in complex biomaterial systems is demonstrated. The highly repetitive structure of decorin was analyzed to identify peptides that are representative of the inner and outer surface, and it was shown that only peptides based on the inner surface of decorin bind to collagen. The peptide with the highest binding affinity for collagenI, LHERHLNNN, served to slow down the diffusion of a conjugated dye in a collagen gel, while its dimer could physically crosslink collagen, thereby enhancing the elastic modulus of the gel by one order of magnitude. These results show the potential of the identified peptides for the design of biomaterials for applications in regenerative medicine. KW - biomaterials KW - collagen KW - gels KW - peptides KW - protein-protein interactions Y1 - 2015 U6 - https://doi.org/10.1002/anie.201505227 SN - 1433-7851 SN - 1521-3773 VL - 54 IS - 37 SP - 10980 EP - 10984 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Sauter, Tilman A1 - Kratz, Karl A1 - Farhan, Muhammad A1 - Heuchel, Matthias A1 - Lendlein, Andreas T1 - Design and fabrication of fiber mesh actuators JF - Applied materials today N2 - Soft actuator performance can be tuned by chemistry or mechanical manipulation, but this adjustability is limited especially in view of their growing technological relevance. Inspired from textile engineering, we designed and fabricated fiber mesh actuators and introduced new features like anisotropic behavior and soft-tissue like elastic deformability. Design criteria for the meshes are the formation of fiber bundles, the angle between fiber bundles in different stacked layers and covalent crosslinks forming within and between fibers at their interfacial contact areas. Through crosslinking the interfiber bond strength increased from a bond transmitting neither axial nor rotational loads (pin joint) to a bond strength capable of both (welded joint). For non-linear elastic stiffening, stacked fiber bundles with four embracing fibers were created forming microstructural rhombus shapes. Loading the rhombus diagonally allowed generation of “soft tissue”-like mechanics. By adjustment of stacking angles, the point of strong increase in stress is tuned. While the highest stresses are observed in aligned and crosslinked fiber mats along the direction of the fiber, the strongest shape-memory actuation behavior is found in randomly oriented fiber mats. Fiber mesh actuators controlled by temperature are of high significance as soft robot skins and as for active patches supporting tissue regeneration. Y1 - 2022 U6 - https://doi.org/10.1016/j.apmt.2022.101562 SN - 2352-9407 VL - 29 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Saretia, Shivam A1 - Machatschek, Rainhard Gabriel A1 - Lendlein, Andreas T1 - Degradation kinetics of oligo(ε-caprolactone) ultrathin films BT - Influence of crystallinity JF - MRS advances : a journal of the Materials Research Society (MRS) N2 - The potential of using crystallinity as morphological parameter to control polyester degradation in acidic environments is explored in ultrathin films by Langmuir technique. Films of hydroxy or methacrylate end-capped oligo(epsilon-caprolactone) (OCL) are prepared at the air-water interface as a function of mean molecular area (MMA). The obtained amorphous, partially crystalline or highly crystalline ultrathin films of OCL are hydrolytically degraded at pH similar to 1.2 on water surface or on silicon surface as-transferred films. A high crystallinity reduces the hydrolytic degradation rate of the films on both water and solid surfaces. Different acceleration rates of hydrolytic degradation of semi-crystalline films are achieved either by crystals complete melting, partially melting, or by heating them below their melting temperatures. Semi-crystalline OCL films transferred via water onto a solid surface retain their crystalline morphology, degrade in a controlled manner, and are of interest as thermoswitchable coatings for cell substrates and medical devices. Y1 - 2021 U6 - https://doi.org/10.1557/s43580-021-00067-4 SN - 2059-8521 VL - 6 IS - 33 SP - 790 EP - 795 PB - Springer Nature Switzerland AG CY - Cham ER - TY - JOUR A1 - Deng, Zijun A1 - Zou, Jie A1 - Wang, Weiwei A1 - Nie, Yan A1 - Tung, Wing-Tai A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Dedifferentiation of mature adipocytes with periodic exposure to cold JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Lipid-containing adipocytes can dedifferentiate into fibroblast-like cells under appropriate culture conditions, which are known as dedifferentiated fat (DFAT) cells. However, the relative low dedifferentiation efficiency with the established protocols limit their widespread applications. In this study, we found that adipocyte dedifferentiation could be promoted via periodic exposure to cold (10 degrees C) in vitro. The lipid droplets in mature adipocytes were reduced by culturing the cells in periodic cooling/heating cycles (10-37 degrees C) for one week. The periodic temperature change led to the down-regulation of the adipogenic genes (FABP4, Leptin) and up-regulation of the mitochondrial uncoupling related genes (UCP1, PGC-1 alpha, and PRDM16). In addition, the enhanced expression of the cell proliferation marker Ki67 was observed in the dedifferentiated fibroblast-like cells after periodic exposure to cold, as compared to the cells cultured in 37 degrees C. Our in vitro model provides a simple and effective approach to promote lipolysis and can be used to improve the dedifferentiation efficiency of adipocytes towards multipotent DFAT cells. KW - Adipocyte KW - dedifferentiation KW - cold KW - lipid Y1 - 2019 U6 - https://doi.org/10.3233/CH-199005 SN - 1386-0291 SN - 1875-8622 VL - 71 IS - 4 SP - 415 EP - 424 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Izraylit, Victor A1 - Liu, Yue A1 - Tarazona, Natalia A. A1 - Machatschek, Rainhard Gabriel A1 - Lendlein, Andreas T1 - Crystallization and degradation behaviour of multiblock copolyester blends in Langmuir monolayers JF - MRS communications / a publication of the Materials Research Society N2 - Supporting the wound healing of soft tissues requires fixation devices becoming more elastic while degrading. To address this unmet need, we designed a blend of degradable multiblock copolymers, which is cross-linked by PLA stereocomplexation combining two soft segments differing substantially in their hydrolytic degradation rate. The degradation path and concomitant structural changes are predicted by Langmuir monolayer technique. The fast hydrolysis of one soft segment leads to a decrease of the total polymer mass at constant physical cross-linking density. The corresponding increase of the average spacing between the network nodes suggests the targeted increase of the blend's flexibility. KW - Degradable KW - In situ KW - Microstructure KW - Thin film Y1 - 2021 U6 - https://doi.org/10.1557/s43579-021-00107-y SN - 2159-6859 SN - 2159-6867 VL - 11 IS - 6 SP - 850 EP - 855 PB - Springer CY - Berlin ER - TY - JOUR A1 - Saatchi, Mersa A1 - Behl, Marc A1 - Nöchel, Ulrich A1 - Lendlein, Andreas T1 - Copolymer Networks From Oligo(epsilon-caprolactone) and n-Butyl Acrylate Enable a Reversible Bidirectional Shape-Memory Effect at Human Body Temperature JF - Macromolecular rapid communications N2 - Exploiting the tremendous potential of the recently discovered reversible bidirectional shape-memory effect (rbSME) for biomedical applications requires switching temperatures in the physiological range. The recent strategy is based on the reduction of the melting temperature range (T-m) of the actuating oligo(epsilon-caprolactone) (OCL) domains in copolymer networks from OCL and n-butyl acrylate (BA), where the reversible effect can be adjusted to the human body temperature. In addition, it is investigated whether an rbSME in the temperature range close or even above T-m,T-offset (end of the melting transition) can be obtained. Two series of networks having mixtures of OCLs reveal broad T(m)s from 2 degrees C to 50 degrees C and from -10 degrees C to 37 degrees C, respectively. In cyclic, thermomechanical experiments the rbSME can be tailored to display pronounced actuation in a temperature interval between 20 degrees C and 37 degrees C. In this way, the application spectrum of the rbSME can be extended to biomedical applications. KW - body temperature KW - broad melting temperature range KW - orientational memory KW - reversible bidirectional shape-memory polymer KW - copolymer networks Y1 - 2015 U6 - https://doi.org/10.1002/marc.201400729 SN - 1022-1336 SN - 1521-3927 VL - 36 IS - 10 SP - 880 EP - 884 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Liang, Xiao A1 - Behl, Marc A1 - Lützow, Karola A1 - Lendlein, Andreas T1 - Cooligomers from morpholine-2,5-dione and para-dioxanone and catalyst complex SnOct(2)/2-hydroxyethyl sulfide JF - MRS advances : a journal of the Materials Research Society (MRS) N2 - Complexes from catalysts and initiator can be used to insert a specific number of additional chemical functional groups in (co)polymers prepared by ring-opening polymerization (ROP) of lactones. We report on the synthesis of cooligomers from sec-butyl-morpholine-2,5-dione (SBMD) and para-dioxanone (PDX) by ROP with varied feed ratios in the bulk using the catalyst complex SnOct(2)/2-hydroxyethyl sulfide. M-n of the cooligomers (determined by GPC) decreased with decreasing SBMD feed ratio from 4200 +/- 420 to 800 +/- 80 g mol(-1). When the feed ratio was reduced from 80 to 50 mol% the molar ratio of SBMD of the cooligomers (determined by H-1-NMR) remained nearly unchanged between 81 and 86 mol% and was attributed to a higher reactivity of SBMD. This assumption was confirmed by fractionation of GPC, in which an increase of SBMD with increasing molecular weight was observed. The catalyst/initiator system provides a high potential to create orthogonal building blocks by cleavage of the sulfide bond. Y1 - 2021 U6 - https://doi.org/10.1557/s43580-021-00082-5 SN - 2059-8521 VL - 6 IS - 32 SP - 764 EP - 768 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Dal Bianco, Andrea A1 - Wischke, Christian A1 - Zhou, Shuo A1 - Lendlein, Andreas T1 - Controlling surface properties and permeability of polyglycerol network films JF - Polymers for advanced technologies N2 - While branched polyglycerol (PG)-based molecules are well established as hydrophilic particles, the capacity of utilizing PG in bulk materials and opportunities arising by their further surface functionalization have only recently been considered. Here we investigated how the mold used in PG network synthesis may affect surface composition and how the permeability of substances through PG can be controlled by altering network structure, i.e. introducing 20mol% oligoethylene glycol (OEG) bifunctional spacer molecules. Overall, PG-based bulk network materials were shown to be tailorable, hydrophilic, low swelling and relatively stiff polyether-based materials, with low impact of salt onto material properties. Based on these features, but also on the principal capacity of free hydroxyl groups to be used for functionalization reactions, these materials may be an interesting platform for medical and technical applications, e.g. as diffusion-rate controlling membrane in aqueous environment. Copyright (c) 2016 John Wiley & Sons, Ltd. KW - polyglycerol KW - surface properties KW - diffusion KW - network structure Y1 - 2017 U6 - https://doi.org/10.1002/pat.3917 SN - 1042-7147 SN - 1099-1581 VL - 28 SP - 1263 EP - 1268 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Vukicevic, Radovan A1 - Neffe, Axel T. A1 - Luetzow, Karola A1 - Pierce, Benjamin F. A1 - Lendlein, Andreas T1 - Conditional Ultrasound Sensitivity of Poly[(N-isopropylacrylamide)-co-(vinyl imidazole)] Microgels for Controlled Lipase Release JF - Macromolecular rapid communications N2 - Triggering the release of cargo from a polymer network by ultrasonication as an external, non-invasive stimulus can be an interesting concept for on-demand release. Here, it is shown that, in pH-and thermosensitive microgels, the ultrasound sensitivity of the polymer network depends on the external conditions. Crosslinked poly[(N-isopropylacrylamide)-co-(vinyl imidazole)] microgels showed a volume phase transition temperature (VPTT) of 25-50 degrees C, which increases with decreasing pH. Above the VPTT the polymer chains are collapsed, while below VPTT they are extended. Only in the case of maximum observed swelling, where the polymer chains are expanded, the microgels are mechanically fragmented through ultrasonication. In contrast, when the polymer chains are partially collapsed it is not possible to manipulate the microgels by ultrasound. Additionally, the ultrasound-induced on-demand release of wheat germ lipase from the microgels could be demonstrated successfully. The principle of conditional ultrasound sensitivity is likely to be general and can be used for selection of matrix-cargo combinations. KW - ultrasound KW - polymers KW - microgels KW - lipase release KW - controlled release KW - thermoresponsive polymers KW - biomaterials Y1 - 2015 U6 - https://doi.org/10.1002/marc.201500311 SN - 1022-1336 SN - 1521-3927 VL - 36 IS - 21 SP - 1891 EP - 1896 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Krüger-Genge, Anne A1 - Schulz, Christian A1 - Kratz, Karl A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Comparison of two substrate materials used as negative control in endothelialization studies BT - Glass versus polymeric tissue culture plate JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - The endothelialization of synthetic surfaces applied as cardiovascular implant materials is an important issue to ensure the anti-thrombotic quality of a biomaterial. However, the rapid and constant development of a functionallycon-fluent endothelial cell monolayer is challenging. In order to investigate the compatibility of potential implant materials with endothelial cells several in vitro studies are performed. Here, glass and tissue culture plates (TCP) are often used as reference materials for in vitro pre-testing. However, a direct comparison of both substrates is lacking. Therefore, a comparison of study results is difficult, since results are often related to various reference materials. In this study, the endothelialization of glass and TCP was investigated in terms of adherence, morphology, integrity, viability and function using human umbilical vein endothelial cells (HUVEC). On both substrates an almost functionally confluent HUVEC monolayer was developed after nine days of cell seeding with clearly visible cell rims, decreased stress fiber formation and a pronounced marginal filament band. The viability of HUVEC was comparable for both substrates nine days after cell seeding with only a few dead cells. According to that, the cell membrane integrity as well as the metabolic activity showed no differences between TCP and glass. However, a significant difference was observed for the secretion of IL-6 and IL-8. The concentration of both cytokines, which are associated with migratory activity, was increased in the supernatant of HUVEC seeded on TCP. This result matches well with the slightly increased number of adherent HUVEC on TCP. In conclusion, these findings indicate that both reference materials are almost comparable and can be used equivalently as control materials in in vitro endothelialization studies. KW - Negative control KW - endothelial cells KW - glass KW - TCP KW - reference Y1 - 2018 U6 - https://doi.org/10.3233/CH-189904 SN - 1386-0291 SN - 1875-8622 VL - 69 IS - 3 SP - 437 EP - 445 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Bhuvanesh, Thanga A1 - Machatschek, Rainhard Gabriel A1 - Lysyakova, Liudmila A1 - Kratz, Karl A1 - Schulz, Burkhard A1 - Ma, Nan A1 - Lendlein, Andreas T1 - Collagen type-IV Langmuir and Langmuir-Schafer layers as model biointerfaces to direct stem cell adhesion JF - Biomedical materials : materials for tissue engineering and regenerative medicine N2 - In biomaterial development, the design of material surfaces that mimic the extra-cellular matrix (ECM) in order to achieve favorable cellular instruction is rather challenging. Collagen-type IV (Col-IV), the major scaffolding component of Basement Membranes (BM), a specialized ECM with multiple biological functions, has the propensity to form networks by self-assembly and supports adhesion of cells such as endothelial cells or stem cells. The preparation of biomimetic Col-IV network-like layers to direct cell responses is difficult. We hypothesize that the morphology of the layer, and especially the density of the available adhesion sites, regulates the cellular adhesion to the layer. The Langmuir monolayer technique allows for preparation of thin layers with precisely controlled packing density at the air-water (A-W) interface. Transferring these layers onto cell culture substrates using the Langmuir-Schafer (LS) technique should therefore provide a pathway for preparation of BM mimicking layers with controlled cell adherence properties. In situ characterization using ellipsometry and polarization modulation-infrared reflection absorption spectroscopy of Col-IV layer during compression at the A-W interface reveal that there is linear increase of surface molecule concentration with negligible orientational changes up to a surface pressure of 25 mN m(-1). Smooth and homogeneous Col-IV network-like layers are successfully transferred by LS method at 15 mN m(-1) onto poly(ethylene terephthalate) (PET), which is a common substrate for cell culture. In contrast, the organization of Col-IV on PET prepared by the traditionally employed solution deposition method results in rather inhomogeneous layers with the appearance of aggregates and multilayers. Progressive increase in the number of early adherent mesenchymal stem cells (MSCs) after 24 h by controlling the areal Col-IV density by LS transfer at 10, 15 and 20 mN m(-1) on PET is shown. The LS method offers the possibility to control protein characteristics on biomaterial surfaces such as molecular density and thereby, modulate cell responses. KW - collagen-IV KW - basement membrane KW - Langmuir-Schafer films KW - stem cell adhesion KW - protein KW - ellipsometry Y1 - 2019 U6 - https://doi.org/10.1088/1748-605X/aaf464 SN - 1748-6041 SN - 1748-605X VL - 14 IS - 2 PB - Inst. of Physics Publ. CY - Bristol ER - TY - JOUR A1 - Moradian, Hanieh A1 - Gossen, Manfred A1 - Lendlein, Andreas T1 - Co-delivery of genes can be confounded by bicistronic vector design JF - MRS Communications N2 - Maximizing the efficiency of nanocarrier-mediated co-delivery of genes for co-expression in the same cell is critical for many applications. Strategies to maximize co-delivery of nucleic acids (NA) focused largely on carrier systems, with little attention towards payload composition itself. Here, we investigated the effects of different payload designs: co-delivery of two individual "monocistronic" NAs versus a single bicistronic NA comprising two genes separated by a 2A self-cleavage site. Unexpectedly, co-delivery via the monocistronic design resulted in a higher percentage of co-expressing cells, while predictive co-expression via the bicistronic design remained elusive. Our results will aid the application-dependent selection of the optimal methodology for co-delivery of genes. KW - Molecular KW - Packaging KW - Protein Y1 - 2022 U6 - https://doi.org/10.1557/s43579-021-00128-7 SN - 2159-6859 SN - 2159-6867 VL - 12 IS - 2 SP - 145 EP - 153 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Zhang, Pengfei A1 - Behl, Marc A1 - Peng, Xingzhou A1 - Balk, Maria A1 - Lendlein, Andreas T1 - Chemoresponsive Shape-Memory Effect of Rhodium-Phosphine Coordination Polymer Networks JF - Chemistry of materials : a publication of the American Chemical Society N2 - Chemoresponsive polymers are of technological significance for smart sensors or systems capable of molecular recognition. An important key requirement for these applications is the material’s structural integrity after stimulation. We explored whether covalently cross-linked metal ion–phosphine coordination polymers (MPN) can be shaped into any temporary shape and are capable of recovering from this upon chemoresponsive exposure to triphenylphosphine (Ph3P) ligands, whereas the MPN provide structural integrity. Depending on the metal-ion concentration used during synthesis of the MPN, the degree of swelling of the coordination polymer networks could be adjusted. Once the MPN was immersed into Ph3P solution, the reversible ligand-exchange reaction between the metal ions and the free Ph3P in solution causes a decrease of the coordination cross-link density in MPN again. The Ph3P-treated MPN was able to maintain its original shape, indicating a certain stability of shape even after stimulation. In this way, chemoresponsive control of the elastic properties (increase in volume and decrease of mechanical strength) of the MPN was demonstrated. This remarkable behavior motivated us to explore whether the MPN are capable of a chemoresponsive shape-memory effect. In initial experiments, shape fixity of around 60% and shape recovery of almost 90% were achieved when the MPN was exposed to Ph3P in case of rhodium. Potential applications for chemoresponsive shape-memory systems could be shapable semiconductors, e.g., for lighting or catalysts, which provide catalytic activity on demand. Y1 - 2019 U6 - https://doi.org/10.1021/acs.chemmater.9b00363 SN - 0897-4756 SN - 1520-5002 VL - 31 IS - 15 SP - 5402 EP - 5407 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Moradian, Hanieh A1 - Roch, Toralf A1 - Anthofer, Larissa A1 - Lendlein, Andreas A1 - Gossen, Manfred T1 - Chemical modification of uridine modulates mRNA-mediated proinflammatory and antiviral response in primary human macrophages JF - Molecular therapy N2 - In vitro transcribed (IVT)-mRNA has been accepted as a promising therapeutic modality. Advances in facile and rapid production technologies make IVT-mRNA an appealing alternative to protein- or virus-based medicines. Robust expression levels, lack of genotoxicity, and their manageable immunogenicity benefit its clinical applicability. We postulated that innate immune responses of therapeutically relevant human cells can be tailored or abrogated by combinations of 5'-end and internal IVT-mRNA modifications. Using primary human macrophages as targets, our data show the particular importance of uridine modifications for IVT-mRNA performance. Among five nucleotide modification schemes tested, 5-methoxy-uridine outperformed other modifications up to 4-fold increased transgene expression, triggering moderate proinflammatory and non-detectable antiviral responses. Macrophage responses against IVT-mRNAs exhibiting high immunogenicity (e.g., pseudouridine) could be minimized upon HPLC purification. Conversely, 5'-end modifications had only modest effects on mRNA expression and immune responses. Our results revealed how the uptake of chemically modified IVT-mRNA impacts human macrophages, responding with distinct patterns of innate immune responses concomitant with increased transient transgene expression. We anticipate our findings are instrumental to predictively address specific cell responses required for a wide range of therapeutic applications from eliciting controlled immunogenicity in mRNA vaccines to, e.g., completely abrogating cell activation in protein replacement therapies. Y1 - 2022 U6 - https://doi.org/10.1016/j.omtn.2022.01.004 SN - 2162-2531 VL - 27 SP - 854 EP - 869 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Hauser, Sandra A1 - Wodtke, Robert A1 - Tondera, Christoph A1 - Wodtke, Johanna A1 - Neffe, Axel T. A1 - Hampe, Jochen A1 - Lendlein, Andreas A1 - Löser, Reik A1 - Pietzsch, Jens T1 - Characterization of Tissue Transglutaminase as a Potential Biomarker for Tissue Response toward Biomaterials JF - ACS biomaterials science & engineering N2 - Tissue transglutaminase (TGase 2) is proposed to be important for biomaterial-tissue interactions due to its presence and versatile functions in the extracellular environment. TGase 2 catalyzes the cross-linking of proteins through its Ca2+-dependent acyltransferase activity. Moreover, it enhances the interactions between fibronectin and integrins, which in turn mediates the adhesion, migration, and motility of the cells. TGase 2 is also a key player in the pathogenesis of fibrosis. In this study, we investigated whether TGase 2 is present at the biomaterial tissue interface and might serve as an informative biomarker for the visualization of tissue response toward gelatin-based biomaterials. Two differently cross-linked hydrogels were used, which were obtained by the reaction of gelatin with lysine diisocyanate ethyl ester. The overall expression of TGase 2 by endothelial cells, macrophages, and granulocytes was partly influenced by contact to the hydrogels or their degradation products, although no clear correlation was evidenced. In contrast, the secretion of TGase 2 differed remarkably between the different cells, indicating that it might be involved in the cellular reaction toward gelatin-based hydrogels. The hydrogels were implanted subcutaneously in immunocompetent, hairless SKH1-Elite mice. Ex vivo immunohistochemical analysis of tissue sections over 112 days revealed enhanced expression of TGase 2 around the hydrogels, in particular at days 14 and 21 post-implantation. The incorporation of fluorescently labeled cadaverine derivatives for the detection of active TGase 2 was in accordance with the results of the expression analysis. The presence of an irreversible inhibitor of TGase 2 led to attenuated incorporation of the cadaverines, which verified the catalytic action of TGase 2. Our in vitro and ex vivo results verified TGase 2 as a potential biomarker for tissue response toward gelatin-based hydrogels. In vivo, no TGase 2 activity was detectable, which is mainly attributed to the unfavorable physicochemical properties of the cadaverine probe used. KW - extracellular matrix modifying enzymes KW - gelatin-based hydrogels KW - biomaterial-tissue interface KW - polyamines KW - optical imaging Y1 - 2019 U6 - https://doi.org/10.1021/acsbiomaterials.9b01299 SN - 2373-9878 VL - 5 IS - 11 SP - 5979 EP - 5989 PB - American Chemical Society CY - Washington ER -