TY - JOUR A1 - Kessler, Katharina A1 - Hornemann, Silke A1 - Rudovich, Natalia A1 - Weber, Daniela A1 - Grune, Tilman A1 - Kramer, Achim A1 - Pfeiffer, Andreas F. H. A1 - Pivovarova-Ramich, Olga T1 - Saliva samples as a tool to study the effect of meal timing on metabolic and inflammatory biomarkers JF - Nutrients N2 - Meal timing affects metabolic regulation in humans. Most studies use blood samples fortheir investigations. Saliva, although easily available and non-invasive, seems to be rarely used forchrononutritional studies. In this pilot study, we tested if saliva samples could be used to studythe effect of timing of carbohydrate and fat intake on metabolic rhythms. In this cross-over trial, 29 nonobese men were randomized to two isocaloric 4-week diets: (1) carbohydrate-rich meals until13:30 and high-fat meals between 16:30 and 22:00 or (2) the inverse order of meals. Stimulated salivasamples were collected every 4 h for 24 h at the end of each intervention, and levels of hormones andinflammatory biomarkers were assessed in saliva and blood. Cortisol, melatonin, resistin, adiponectin, interleukin-6 and MCP-1 demonstrated distinct diurnal variations, mirroring daytime reports inblood and showing significant correlations with blood levels. The rhythm patterns were similar forboth diets, indicating that timing of carbohydrate and fat intake has a minimal effect on metabolicand inflammatory biomarkers in saliva. Our study revealed that saliva is a promising tool for thenon-invasive assessment of metabolic rhythms in chrononutritional studies, but standardisation of sample collection is needed in out-of-lab studies. KW - meal timing KW - saliva KW - circadian clock KW - adiponectin KW - resistin KW - visfatin KW - insulin KW - melatonin KW - cortisol KW - cytokines Y1 - 2020 U6 - https://doi.org/10.3390/nu12020340 SN - 2072-6643 IS - 2 SP - 1 EP - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Garcia, A. L. A1 - Steiniger, J. A1 - Reich, S. C. A1 - Weickert, M. O. A1 - Harsch, I. A1 - Machowetz, A. A1 - Mohlig, M. A1 - Spranger, Joachim A1 - Rudovich, N. N. A1 - Meuser, F. A1 - Doerfer, J. A1 - Katz, N. A1 - Speth, M. A1 - Zunft, Hans-Joachim Franz A1 - Pfeiffer, Andreas F. H. A1 - Koebnick, Corinna T1 - Arabinoxylan fibre consumption improved glucose metabolism, but did not affect serum adipokines in subjects with impaired glucose tolerance JF - Hormone and metabolic research N2 - The consumption of arabinoxylan, a soluble fibre fraction, has been shown to improve glycemic control in type 2 diabetic subjects. Soluble dietary fibre may modulate gastrointestinal or adipose tissue hormones regulating food intake. The present study investigated the effects of arabinoxylan consumption on serum glucose, insulin, lipids, leptin, adiponectin and resistin in subjects with impaired glucose tolerance. In a randomized, single-blind, controlled, crossover intervention trial, 11 adults consumed white bread rolls as either placebo or supplemented with 15g arabinoxylan for 6 weeks with a 6-week washout period. Fasting serum glucose, insulin, triglycerides, unesterified fatty acids, apolipoprotein A1 and B, adiponectin, resistin and leptin were assessed before and after intervention. Fasting serum glucose, serum triglycerides and apolipoprotein A-1 were significantly lower during arabinoxylan consumption compared to placebo (p = 0.029, p = 0.047; p = 0.029, respectively). No effects of arabinoxylan were observed for insulin, adiponectin, leptin and resistin as well as for apolipoprotein B, and unesterified fatty acids. In conclusion, the consumption of AX in subjects with impaired glucose tolerance improved fasting serum glucose, and triglycerides. However, this beneficial effect was not accompanied by changes in fasting adipokine concentrations. KW - dietary fibre KW - arabinoxylan KW - adiponectin KW - resistin KW - leptin Y1 - 2006 U6 - https://doi.org/10.1055/s-2006-955089 SN - 0018-5043 VL - 38 IS - 2 SP - 761 EP - 766 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Sun, Sheng-Yun A1 - Huang, Jin A1 - Meng, Min-Jie A1 - Lu, Jia-Hai A1 - Hocher, Berthold A1 - Liu, Kang-Li A1 - Yang, Qin-He A1 - Zhu, Xiao-Feng T1 - Improvement of lipid profile and reduction of body weight by Shan He Jian Fei Granules in high fat diet-induced obese rats JF - Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion N2 - Background: The goal was to study lipid profiles (TG, TC, LDL, HDL), effects on serum leptin, and fat tissue adiponectin, and resistin as well as body weight effects of Shan He Jian Fei Granules (SHJFG) in rats on a high fat diet. Methods: Rats were randomly divided into five groups: normal control group fed with normal fat diet, rats on high fat diet receiving low dosage, middle dosage, high dosage of Shan He Jian Fei Granules (SHJFG) as well as a high fat diet group receiving placebo. Rats were treated for 8 weeks. Body weight and naso-anal length of each rat were recorded and Lee's index was calculated. Serum TG, TC, LDL, HDL and leptin concentrations were analyzed. The gene expressions of adiponectin and resistin in adipose tissues were tested by RT-PCR. Results: Compared to the high-fat diet group, body weights, Lee's indexes, weight of fat tissues and serum TG, TC, LDL and leptin of SHJFG groups significantly decreased (p<0.05), whereas mRNA expressions of adiponectin and resistin of SHJFG groups significantly increased (p<0.05). Conclusions: SHJFG could significantly lower body weight and serum TG, TC, and LDL of obese rats. The effects of SHJFG in lowering leptin synthesis and raising mRNA expression of adiponectin and resistin in fat tissues may act as part of the mechanisms in lowering body weight of obese rats. Further studies are needed to demonstrate whether SHJFG may also reduce overall cardiovascular morbidity and mortality like other lipid lowering drugs. KW - obesity KW - high-fat diet KW - Shan He Jian Fei Granules (SHJFG) KW - lipid KW - adiponectin KW - resistin KW - leptin Y1 - 2012 SN - 1433-6510 VL - 58 IS - 1-2 SP - 81 EP - 87 PB - Clin Lab Publ., Verl. Klinisches Labor CY - Heidelberg ER -