TY - JOUR A1 - Ramage, Justine Lucille A1 - Fortier, Daniel A1 - Hugelius, Gustaf A1 - Lantuit, Hugues A1 - Morgenstern, Anne T1 - Distribution of carbon and nitrogen along hillslopes in three valleys on Herschel Island, Yukon Territory, Canada JF - Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution N2 - Thermokarst results from the thawing of ice-rich permafrost and alters the biogeochemical cycling in the Arctic by reworking soil material and redistributing soil organic carbon (SOC) and total nitrogen (TN) along uplands, hillslopes, and lowlands. Understanding the impact of this redistribution is key to better estimating the storage of SOC in permafrost terrains. However, there are insufficient studies quantifying long-term impacts of thaw processes on the distribution of SOC and TN along hillslopes. We address this issue by providing estimates of SOC and TN stocks along the hillslopes of three valleys located on Herschel Island (Yukon, Canada), and by discussing the impact of hillslope thermokarst on the variability of SOC and TN stocks. We found that the average SOC and TN 0-100 cm stocks in the valleys were 26.4 +/- 8.9 kg C m(-2) and 2.1 +/- 0.6 kg N m(-2). We highlight the strong variability in the soils physical and geochemical properties within hillslope positions. High SOC stocks were found at the summits, essentially due to burial of organic matter by cryoturbation, and at the toeslopes due to impeded drainage which favored peat formation and SOC accumulation. The average carbon-to-nitrogen ratio in the valleys was 12.9, ranging from 9.7 to 18.9, and was significantly higher at the summits compared to the backslopes and footslopes (p < 0.05), suggesting a degradation of SOC downhill. Carbon and nitrogen contents and stocks were significantly lower on 16% of the sites that were previously affected by hillslope thermokarst (p < 0.05). Our results showed that lateral redistribution of SOC and TN due to hillslope thermokarst has a strong impact on the SOC storage in ice-rich permafrost terrains. KW - Hillslope thermokarst KW - Soil organic carbon storage KW - Catchment geomorphology KW - Permafrost degradation Y1 - 2019 U6 - https://doi.org/10.1016/j.catena.2019.02.029 SN - 0341-8162 SN - 1872-6887 VL - 178 SP - 132 EP - 140 PB - Elsevier CY - Amsterdam ER -