TY - JOUR A1 - Dwarkadas, Vikram V. A1 - Rosenberg, D. T1 - X-ray Emission from Ionized Wind-Bubbles around Wolf-Rayet Stars JF - Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.–5. June 2015 N2 - Using a code that employs a self-consistent method for computing the effects of photoionization on circumstellar gas dynamics, we model the formation of wind-driven nebulae around massive Wolf-Rayet (W-R) stars. Our algorithm incorporates a simplified model of the photo-ionization source, computes the fractional ionization of hydrogen due to the photoionizing flux and recombination, and determines self-consistently the energy balance due to ionization, photo-heating and radiative cooling. We take into account changes in stellar properties and mass-loss over the star's evolution. Our multi-dimensional simulations clearly reveal the presence of strong ionization front instabilities. Using various X-ray emission models, and abundances consistent with those derived for W-R nebulae, we compute the X-ray flux and spectra from our wind bubble models. We show the evolution of the X-ray spectral features with time over the evolution of the star, taking the absorption of the X-rays by the ionized bubble into account. Our simulated X-ray spectra compare reasonably well with observed spectra of Wolf-Rayet bubbles. They suggest that X-ray nebulae around massive stars may not be easily detectable, consistent with observations.∗ Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-88301 SP - 329 EP - 332 ER -